
NI-SCOPE Python API Documentation
Release 1.4.7

NI

Dec 15, 2023

DOCUMENTATION

1 About 1
1.1 Support Policy . 1

2 Contributing 3

3 Support / Feedback 5

4 Bugs / Feature Requests 7
4.1 niscope module . 7

4.1.1 Installation . 7
4.1.2 Usage . 7
4.1.3 API Reference . 8

4.2 Additional Documentation . 150

5 License 151

6 Indices and tables 153

Python Module Index 155

Index 157

i

ii

CHAPTER

ONE

ABOUT

The niscope module provides a Python API for NI-SCOPE. The code is maintained in the Open Source repository for
nimi-python.

1.1 Support Policy

niscope supports all the Operating Systems supported by NI-SCOPE.

It follows Python Software Foundation support policy for different versions of CPython.

1

https://github.com/ni/nimi-python
https://devguide.python.org/#status-of-python-branches

NI-SCOPE Python API Documentation, Release 1.4.7

2 Chapter 1. About

CHAPTER

TWO

CONTRIBUTING

We welcome contributions! You can clone the project repository, build it, and install it by following these instructions.

3

https://github.com/ni/nimi-python/blob/master/CONTRIBUTING.md

NI-SCOPE Python API Documentation, Release 1.4.7

4 Chapter 2. Contributing

CHAPTER

THREE

SUPPORT / FEEDBACK

For support specific to the Python API, follow the processs in Bugs / Feature Requests. For support with hardware, the
driver runtime or any other questions not specific to the Python API, please visit NI Community Forums.

5

https://forums.ni.com/

NI-SCOPE Python API Documentation, Release 1.4.7

6 Chapter 3. Support / Feedback

CHAPTER

FOUR

BUGS / FEATURE REQUESTS

To report a bug or submit a feature request specific to Python API, please use the GitHub issues page.

Fill in the issue template as completely as possible and we will respond as soon as we can.

4.1 niscope module

4.1.1 Installation

As a prerequisite to using the niscope module, you must install the NI-SCOPE runtime on your system. Visit
ni.com/downloads to download the driver runtime for your devices.

The nimi-python modules (i.e. for NI-SCOPE) can be installed with pip:

$ python -m pip install niscope~=1.4.7

4.1.2 Usage

The following is a basic example of using the niscope module to open a session to a High Speed Digitizer and capture
a single record of 1000 points.

import niscope
with niscope.Session("Dev1") as session:

session.channels[0].configure_vertical(range=1.0, coupling=niscope.VerticalCoupling.
→˓AC)

session.channels[1].configure_vertical(range=10.0, coupling=niscope.VerticalCoupling.
→˓DC)

session.configure_horizontal_timing(min_sample_rate=50000000, min_num_pts=1000, ref_
→˓position=50.0, num_records=5, enforce_realtime=True)
with session.initiate():

waveforms = session.channels[0,1].fetch(num_records=5)
for wfm in waveforms:

print('Channel {0}, record {1} samples acquired: {2:,}\n'.format(wfm.channel,␣
→˓wfm.record, len(wfm.samples)))

Find all channel 1 records (Note channel name is always a string even if integers␣
→˓used in channel[])

chan1 = [wfm for wfm in waveforms if wfm.channel == '0']

(continues on next page)

7

https://github.com/ni/nimi-python/issues
http://www.ni.com/downloads/
http://pypi.python.org/pypi/pip

NI-SCOPE Python API Documentation, Release 1.4.7

(continued from previous page)

Find all record number 3
rec3 = [wfm for wfm in waveforms if wfm.record == 3]

If you need faster fetch performance, or to directly interface with SciPy, you can use the fetch_into() method instead
of fetch(). See the fetch_into example.

Other usage examples can be found on GitHub.

4.1.3 API Reference

Session

class niscope.Session(self , resource_name, id_query=False, reset_device=False, options={}, *,
grpc_options=None)

Performs the following initialization actions:

• Creates a new IVI instrument driver and optionally sets the initial state of the following session properties:
Range Check, Cache, Simulate, Record Value Coercions

• Opens a session to the specified device using the interface and address you specify for the resourceName

• Resets the digitizer to a known state if resetDevice is set to True

• Queries the instrument ID and verifies that it is valid for this instrument driver if the IDQuery is set to True

• Returns an instrument handle that you use to identify the instrument in all subsequent instrument driver
method calls

Parameters

• resource_name (str) –

Caution: Traditional NI-DAQ and NI-DAQmx device names are not case-sensitive.
However, all IVI names, such as logical names, are case-sensitive. If you use logical
names, driver session names, or virtual names in your program, you must make sure that
the name you use matches the name in the IVI Configuration Store file exactly, without
any variations in the case of the characters.

Specifies the resource name of the device to initialize

For Traditional NI-DAQ devices, the syntax is DAQ::n, where n is the device number as-
signed by MAX, as shown in Example 1.

For NI-DAQmx devices, the syntax is just the device name specified in MAX, as shown in
Example 2. Typical default names for NI-DAQmx devices in MAX are Dev1 or PXI1Slot1.
You can rename an NI-DAQmx device by right-clicking on the name in MAX and entering
a new name.

An alternate syntax for NI-DAQmx devices consists of DAQ::NI-DAQmx device name, as
shown in Example 3. This naming convention allows for the use of an NI-DAQmx device in
an application that was originally designed for a Traditional NI-DAQ device. For example,

8 Chapter 4. Bugs / Feature Requests

https://www.scipy.org/
https://github.com/ni/nimi-python/tree/master/src/niscope/examples
https://docs.python.org/3/library/stdtypes.html#str

NI-SCOPE Python API Documentation, Release 1.4.7

if the application expects DAQ::1, you can rename the NI-DAQmx device to 1 in MAX and
pass in DAQ::1 for the resource name, as shown in Example 4.

If you use the DAQ::n syntax and an NI-DAQmx device name already exists with that same
name, the NI-DAQmx device is matched first.

You can also pass in the name of an IVI logical name or an IVI virtual name configured with
the IVI Configuration utility, as shown in Example 5. A logical name identifies a particular
virtual instrument. A virtual name identifies a specific device and specifies the initial settings
for the session.

Exam-
ple

Device Type Syntax

1 Traditional NI-DAQ device DAQ::1 (1 = device number)
2 NI-DAQmx device myDAQmxDevice (myDAQmxDevice = de-

vice name)
3 NI-DAQmx device DAQ::myDAQmxDevice (myDAQmxDevice =

device name)
4 NI-DAQmx device DAQ::2 (2 = device name)
5 IVI logical name or IVI vir-

tual name
myLogicalName (myLogicalName = name)

• id_query (bool) – Specify whether to perform an ID query.

When you set this parameter to True, NI-SCOPE verifies that the device you initialize is a
type that it supports.

When you set this parameter to False, the method initializes the device without performing
an ID query.

Defined Values

True—Perform ID query
False—Skip ID query

Default Value: True

• reset_device (bool) – Specify whether to reset the device during the initialization pro-
cess.

Default Value: True

Defined Values

True (1)—Reset device

False (0)—Do not reset device

Note: For the NI 5112, repeatedly resetting the device may cause excessive wear on the
electromechanical relays. Refer to NI 5112 Electromechanical Relays for recommended pro-
gramming practices.

• options (dict) – Specifies the initial value of certain properties for the session. The syntax
for options is a dictionary of properties with an assigned value. For example:

4.1. niscope module 9

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

NI-SCOPE Python API Documentation, Release 1.4.7

{ ‘simulate’: False }

You do not have to specify a value for all the properties. If you do not specify a value for a
property, the default value is used.

Advanced Example: { ‘simulate’: True, ‘driver_setup’: { ‘Model’: ‘<model number>’,
‘BoardType’: ‘<type>’ } }

Property Default
range_check True
query_instrument_status False
cache True
simulate False
record_value_coersions False
driver_setup {}

• grpc_options (niscope.GrpcSessionOptions) – MeasurementLink gRPC session op-
tions

Methods

abort

niscope.Session.abort()

Aborts an acquisition and returns the digitizer to the Idle state. Call this method if the digitizer times
out waiting for a trigger.

acquisition_status

niscope.Session.acquisition_status()

Returns status information about the acquisition to the status output parameter.

Return type
niscope.AcquisitionStatus

Returns

Returns whether the acquisition is complete, in progress, or unknown.

Defined Values

COMPLETE

IN_PROGRESS

STATUS_UNKNOWN

10 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

add_waveform_processing

niscope.Session.add_waveform_processing(meas_function)
Adds one measurement to the list of processing steps that are completed before the measurement.
The processing is added on a per channel basis, and the processing measurements are completed
in the same order they are registered. All measurement library parameters—the properties starting
with “meas_”—are cached at the time of registering the processing, and this set of parameters is
used during the processing step. The processing measurements are streamed, so the result of the
first processing step is used as the input for the next step. The processing is done before any other
measurements.

Tip: This method can be called on specific channels within your niscope.Session instance. Use
Python index notation on the repeated capabilities container channels to specify a subset, and then
call this method on the result.

Example: my_session.channels[...].add_waveform_processing()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.add_waveform_processing()

Parameters
meas_function (niscope.ArrayMeasurement) – The array measurement to add.

auto_setup

niscope.Session.auto_setup()

Automatically configures the instrument. When you call this method, the digitizer senses the input
signal and automatically configures many of the instrument settings. If a signal is detected on a
channel, the driver chooses the smallest available vertical range that is larger than the signal range.
For example, if the signal is a 1.2 Vpk-pk sine wave, and the device supports 1 V and 2 V vertical
ranges, the driver will choose the 2 V vertical range for that channel.

If no signal is found on any analog input channel, a warning is returned, and all channels are enabled.
A channel is considered to have a signal present if the signal is at least 10% of the smallest vertical
range available for that channel.

The following settings are changed:

4.1. niscope module 11

NI-SCOPE Python API Documentation, Release 1.4.7

General
Acquisition mode Normal
Reference clock Internal
Vertical
Vertical coupling AC (DC for NI 5621)
Vertical bandwidth Full
Vertical range Changed by auto setup
Vertical offset 0 V
Probe attenuation Unchanged by auto setup
Input impedance Unchanged by auto setup
Horizontal
Sample rate Changed by auto setup
Min record length Changed by auto setup
Enforce realtime True
Number of Records Changed to 1
Triggering
Trigger type Edge if signal present, otherwise immediate
Trigger channel Lowest numbered channel with a signal present
Trigger slope Positive
Trigger coupling DC
Reference position 50%
Trigger level 50% of signal on trigger channel
Trigger delay 0
Trigger holdoff 0
Trigger output None

clear_waveform_measurement_stats

niscope.Session.clear_waveform_measurement_stats(clearable_measurement_function=niscope.ClearableMeasurement.ALL_MEASUREMENTS)
Clears the waveform stats on the channel and measurement you specify. If you want to clear all of
the measurements, use ALL_MEASUREMENTS in the clearableMeasurementFunction parameter.

Every time a measurement is called, the statistics information is updated, including the min, max,
mean, standard deviation, and number of updates. This information is fetched with niscope.
Session._fetch_measurement_stats(). The multi-acquisition array measurements are also
cleared with this method.

Tip: This method can be called on specific channels within your niscope.Session instance. Use
Python index notation on the repeated capabilities container channels to specify a subset, and then
call this method on the result.

Example: my_session.channels[...].clear_waveform_measurement_stats()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.clear_waveform_measurement_stats()

Parameters
clearable_measurement_function (niscope.ClearableMeasurement) – The
scalar measurement or array measurement to clear the stats for.

12 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

clear_waveform_processing

niscope.Session.clear_waveform_processing()

Clears the list of processing steps assigned to the given channel. The processing is added using
the niscope.Session.add_waveform_processing() method, where the processing steps are
completed in the same order in which they are registered. The processing measurements are streamed,
so the result of the first processing step is used as the input for the next step. The processing is also
done before any other measurements.

Tip: This method can be called on specific channels within your niscope.Session instance. Use
Python index notation on the repeated capabilities container channels to specify a subset, and then
call this method on the result.

Example: my_session.channels[...].clear_waveform_processing()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.clear_waveform_processing()

close

niscope.Session.close()

When you are finished using an instrument driver session, you must call this method to perform the
following actions:

• Closes the instrument I/O session.

• Destroys the IVI session and all of its properties.

• Deallocates any memory resources used by the IVI session.

Note: This method is not needed when using the session context manager

commit

niscope.Session.commit()

Commits to hardware all the parameter settings associated with the task. Use this method if you want
a parameter change to be immediately reflected in the hardware. This method is not supported for
Traditional NI-DAQ (Legacy) devices.

configure_chan_characteristics

niscope.Session.configure_chan_characteristics(input_impedance, max_input_frequency)
Configures the properties that control the electrical characteristics of the channel—the input
impedance and the bandwidth.

Tip: This method can be called on specific channels within your niscope.Session instance. Use
Python index notation on the repeated capabilities container channels to specify a subset, and then
call this method on the result.

4.1. niscope module 13

NI-SCOPE Python API Documentation, Release 1.4.7

Example: my_session.channels[...].configure_chan_characteristics()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.configure_chan_characteristics()

Parameters

• input_impedance (float) – The input impedance for the channel; NI-SCOPE sets
niscope.Session.input_impedance to this value.

• max_input_frequency (float) – The bandwidth for the channel; NI-SCOPE sets
niscope.Session.max_input_frequency to this value. Pass 0 for this value to
use the hardware default bandwidth. Pass –1 for this value to achieve full bandwidth.

configure_equalization_filter_coefficients

niscope.Session.configure_equalization_filter_coefficients(coefficients)
Configures the custom coefficients for the equalization FIR filter on the device. This filter is designed
to compensate the input signal for artifacts introduced to the signal outside of the digitizer. Because
this filter is a generic FIR filter, any coefficients are valid. Coefficient values should be between +1
and –1.

Tip: This method can be called on specific channels within your niscope.Session instance. Use
Python index notation on the repeated capabilities container channels to specify a subset, and then
call this method on the result.

Example: my_session.channels[...].configure_equalization_filter_coefficients()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.configure_equalization_filter_coefficients()

Parameters
coefficients (list of float) – The custom coefficients for the
equalization FIR filter on the device. These coefficients should
be between +1 and –1. You can obtain the number of coeffi-
cients from the :py:attr:`niscope.Session.equalization_num_coefficients
<cvi:py:attr:niscope.Session.equalization_num_coefficients.html>`__
property. The :py:attr:`niscope.Session.equalization_filter_enabled
<cvi:py:attr:niscope.Session.equalization_filter_enabled.html>`__ property must
be set to TRUE to enable the filter.

configure_horizontal_timing

niscope.Session.configure_horizontal_timing(min_sample_rate, min_num_pts, ref_position,
num_records, enforce_realtime)

Configures the common properties of the horizontal subsystem for a multirecord acquisition in terms
of minimum sample rate.

Parameters

14 Chapter 4. Bugs / Feature Requests

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

NI-SCOPE Python API Documentation, Release 1.4.7

• min_sample_rate (float) – The sampling rate for the acquisition. Refer to
niscope.Session.min_sample_rate for more information.

• min_num_pts (int) – The minimum number of points you need in the record for
each channel; call niscope.Session.ActualRecordLength() to obtain the ac-
tual record length used.

Valid Values: Greater than 1; limited by available memory

Note: One or more of the referenced methods are not in the Python API for this
driver.

• ref_position (float) – The position of the Reference Event in the waveform
record specified as a percentage.

• num_records (int) – The number of records to acquire

• enforce_realtime (bool) – Indicates whether the digitizer enforces real-time
measurements or allows equivalent-time (RIS) measurements; not all digitizers sup-
port RIS—refer to Features Supported by Device for more information.

Default value: True

Defined Values

True—Allow real-time acquisitions only

False—Allow real-time and equivalent-time acquisitions

configure_trigger_digital

niscope.Session.configure_trigger_digital(trigger_source,
slope=niscope.TriggerSlope.POSITIVE,
holdoff=hightime.timedelta(seconds=0.0),
delay=hightime.timedelta(seconds=0.0))

Configures the common properties of a digital trigger.

When you initiate an acquisition, the digitizer waits for the start trigger, which is configured through
the niscope.Session.acq_arm_source (Start Trigger Source) property. The default is imme-
diate. Upon receiving the start trigger the digitizer begins sampling pretrigger points. After the
digitizer finishes sampling pretrigger points, the digitizer waits for a reference (stop) trigger that you
specify with a method such as this one. Upon receiving the reference trigger the digitizer finishes the
acquisition after completing posttrigger sampling. With each Configure Trigger method, you specify
configuration parameters such as the trigger source and the amount of trigger delay.

Note: For multirecord acquisitions, all records after the first record are started by using the Advance
Trigger Source. The default is immediate.

You can adjust the amount of pre-trigger and post-trigger samples using the reference position pa-
rameter on the niscope.Session.configure_horizontal_timing() method. The default is
half of the record length.

Some features are not supported by all digitizers. Refer to Features Supported by Device for more
information.

Digital triggering is not supported in RIS mode.

4.1. niscope module 15

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

NI-SCOPE Python API Documentation, Release 1.4.7

Parameters

• trigger_source (str) – Specifies the trigger source. Refer to niscope.
Session.trigger_source for defined values.

• slope (niscope.TriggerSlope) – Specifies whether you want a rising edge or a
falling edge to trigger the digitizer. Refer to niscope.Session.trigger_slope
for more information.

• holdoff (hightime.timedelta, datetime.timedelta, or float in
seconds) – The length of time the digitizer waits after detecting a trigger before
enabling NI-SCOPE to detect another trigger. Refer to niscope.Session.
trigger_holdoff for more information.

• delay (hightime.timedelta, datetime.timedelta, or float in
seconds) – How long the digitizer waits after receiving the trigger to start
acquiring data. Refer to niscope.Session.trigger_delay_time for more
information.

configure_trigger_edge

niscope.Session.configure_trigger_edge(trigger_source, level, trigger_coupling,
slope=niscope.TriggerSlope.POSITIVE,
holdoff=hightime.timedelta(seconds=0.0),
delay=hightime.timedelta(seconds=0.0))

Configures common properties for analog edge triggering.

When you initiate an acquisition, the digitizer waits for the start trigger, which is configured through
the niscope.Session.acq_arm_source (Start Trigger Source) property. The default is imme-
diate. Upon receiving the start trigger the digitizer begins sampling pretrigger points. After the
digitizer finishes sampling pretrigger points, the digitizer waits for a reference (stop) trigger that you
specify with a method such as this one. Upon receiving the reference trigger the digitizer finishes the
acquisition after completing posttrigger sampling. With each Configure Trigger method, you specify
configuration parameters such as the trigger source and the amount of trigger delay.

Note: Some features are not supported by all digitizers. Refer to Features Supported by Device for
more information.

Parameters

• trigger_source (str) – Specifies the trigger source. Refer to niscope.
Session.trigger_source for defined values.

• level (float) – The voltage threshold for the trigger. Refer to niscope.Session.
trigger_level for more information.

• trigger_coupling (niscope.TriggerCoupling) – Applies coupling and filter-
ing options to the trigger signal. Refer to niscope.Session.trigger_coupling
for more information.

• slope (niscope.TriggerSlope) – Specifies whether you want a rising edge or a
falling edge to trigger the digitizer. Refer to niscope.Session.trigger_slope
for more information.

• holdoff (hightime.timedelta, datetime.timedelta, or float in
seconds) – The length of time the digitizer waits after detecting a trigger before

16 Chapter 4. Bugs / Feature Requests

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI-SCOPE Python API Documentation, Release 1.4.7

enabling NI-SCOPE to detect another trigger. Refer to niscope.Session.
trigger_holdoff for more information.

• delay (hightime.timedelta, datetime.timedelta, or float in
seconds) – How long the digitizer waits after receiving the trigger to start
acquiring data. Refer to niscope.Session.trigger_delay_time for more
information.

configure_trigger_hysteresis

niscope.Session.configure_trigger_hysteresis(trigger_source, level, hysteresis,
trigger_coupling,
slope=niscope.TriggerSlope.POSITIVE,
holdoff=hightime.timedelta(seconds=0.0),
delay=hightime.timedelta(seconds=0.0))

Configures common properties for analog hysteresis triggering. This kind of trigger specifies an
additional value, specified in the hysteresis parameter, that a signal must pass through before a trigger
can occur. This additional value acts as a kind of buffer zone that keeps noise from triggering an
acquisition.

When you initiate an acquisition, the digitizer waits for the start trigger, which is configured through
the niscope.Session.acq_arm_source. The default is immediate. Upon receiving the start trig-
ger the digitizer begins sampling pretrigger points. After the digitizer finishes sampling pretrigger
points, the digitizer waits for a reference (stop) trigger that you specify with a method such as this
one. Upon receiving the reference trigger the digitizer finishes the acquisition after completing post-
trigger sampling. With each Configure Trigger method, you specify configuration parameters such
as the trigger source and the amount of trigger delay.

Note: Some features are not supported by all digitizers. Refer to Features Supported by Device for
more information.

Parameters

• trigger_source (str) – Specifies the trigger source. Refer to niscope.
Session.trigger_source for defined values.

• level (float) – The voltage threshold for the trigger. Refer to niscope.Session.
trigger_level for more information.

• hysteresis (float) – The size of the hysteresis window on either side of the level
in volts; the digitizer triggers when the trigger signal passes through the hysteresis
value you specify with this parameter, has the slope you specify with slope, and
passes through the level. Refer to niscope.Session.trigger_hysteresis for
defined values.

• trigger_coupling (niscope.TriggerCoupling) – Applies coupling and filter-
ing options to the trigger signal. Refer to niscope.Session.trigger_coupling
for more information.

• slope (niscope.TriggerSlope) – Specifies whether you want a rising edge or a
falling edge to trigger the digitizer. Refer to niscope.Session.trigger_slope
for more information.

• holdoff (hightime.timedelta, datetime.timedelta, or float in
seconds) – The length of time the digitizer waits after detecting a trigger before

4.1. niscope module 17

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI-SCOPE Python API Documentation, Release 1.4.7

enabling NI-SCOPE to detect another trigger. Refer to niscope.Session.
trigger_holdoff for more information.

• delay (hightime.timedelta, datetime.timedelta, or float in
seconds) – How long the digitizer waits after receiving the trigger to start
acquiring data. Refer to niscope.Session.trigger_delay_time for more
information.

configure_trigger_immediate

niscope.Session.configure_trigger_immediate()

Configures common properties for immediate triggering. Immediate triggering means the digitizer
triggers itself.

When you initiate an acquisition, the digitizer waits for a trigger. You specify the type of trig-
ger that the digitizer waits for with a Configure Trigger method, such as niscope.Session.
configure_trigger_immediate().

configure_trigger_software

niscope.Session.configure_trigger_software(holdoff=hightime.timedelta(seconds=0.0),
delay=hightime.timedelta(seconds=0.0))

Configures common properties for software triggering.

When you initiate an acquisition, the digitizer waits for the start trigger, which is configured through
the niscope.Session.acq_arm_source (Start Trigger Source) property. The default is imme-
diate. Upon receiving the start trigger the digitizer begins sampling pretrigger points. After the
digitizer finishes sampling pretrigger points, the digitizer waits for a reference (stop) trigger that you
specify with a method such as this one. Upon receiving the reference trigger the digitizer finishes the
acquisition after completing posttrigger sampling. With each Configure Trigger method, you specify
configuration parameters such as the trigger source and the amount of trigger delay.

To trigger the acquisition, use niscope.Session.send_software_trigger_edge().

Note: Some features are not supported by all digitizers. Refer to Features Supported by Device for
more information.

Parameters

• holdoff (hightime.timedelta, datetime.timedelta, or float in
seconds) – The length of time the digitizer waits after detecting a trigger before
enabling NI-SCOPE to detect another trigger. Refer to niscope.Session.
trigger_holdoff for more information.

• delay (hightime.timedelta, datetime.timedelta, or float in
seconds) – How long the digitizer waits after receiving the trigger to start
acquiring data. Refer to niscope.Session.trigger_delay_time for more
information.

18 Chapter 4. Bugs / Feature Requests

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI-SCOPE Python API Documentation, Release 1.4.7

configure_trigger_video

niscope.Session.configure_trigger_video(trigger_source, signal_format, event, polarity,
trigger_coupling, enable_dc_restore=False,
line_number=1,
holdoff=hightime.timedelta(seconds=0.0),
delay=hightime.timedelta(seconds=0.0))

Configures the common properties for video triggering, including the signal format, TV event, line
number, polarity, and enable DC restore. A video trigger occurs when the digitizer finds a valid video
signal sync.

When you initiate an acquisition, the digitizer waits for the start trigger, which is configured through
the niscope.Session.acq_arm_source (Start Trigger Source) property. The default is imme-
diate. Upon receiving the start trigger the digitizer begins sampling pretrigger points. After the
digitizer finishes sampling pretrigger points, the digitizer waits for a reference (stop) trigger that you
specify with a method such as this one. Upon receiving the reference trigger the digitizer finishes the
acquisition after completing posttrigger sampling. With each Configure Trigger method, you specify
configuration parameters such as the trigger source and the amount of trigger delay.

Note: Some features are not supported by all digitizers. Refer to Features Supported by Device for
more information.

Parameters

• trigger_source (str) – Specifies the trigger source. Refer to niscope.
Session.trigger_source for defined values.

• signal_format (niscope.VideoSignalFormat) – Specifies the type of video
signal sync the digitizer should look for. Refer to niscope.Session.
tv_trigger_signal_format for more information.

• event (niscope.VideoTriggerEvent) – Specifies the TV event you want to trig-
ger on. You can trigger on a specific or on the next coming line or field of the signal.

• polarity (niscope.VideoPolarity) – Specifies the polarity of the video signal
sync.

• trigger_coupling (niscope.TriggerCoupling) – Applies coupling and filter-
ing options to the trigger signal. Refer to niscope.Session.trigger_coupling
for more information.

• enable_dc_restore (bool) – Offsets each video line so the clamping level
(the portion of the video line between the end of the color burst and the begin-
ning of the active image) is moved to zero volt. Refer to niscope.Session.
enable_dc_restore for defined values.

• line_number (int) – Selects the line number to trigger on. The line number range
covers an entire frame and is referenced as shown on Vertical Blanking and Syn-
chronization Signal. Refer to niscope.Session.tv_trigger_line_number for
more information.

Default value: 1

• holdoff (hightime.timedelta, datetime.timedelta, or float in
seconds) – The length of time the digitizer waits after detecting a trigger before
enabling NI-SCOPE to detect another trigger. Refer to niscope.Session.
trigger_holdoff for more information.

4.1. niscope module 19

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI-SCOPE Python API Documentation, Release 1.4.7

• delay (hightime.timedelta, datetime.timedelta, or float in
seconds) – How long the digitizer waits after receiving the trigger to start
acquiring data. Refer to niscope.Session.trigger_delay_time for more
information.

configure_trigger_window

niscope.Session.configure_trigger_window(trigger_source, low_level, high_level,
window_mode, trigger_coupling,
holdoff=hightime.timedelta(seconds=0.0),
delay=hightime.timedelta(seconds=0.0))

Configures common properties for analog window triggering. A window trigger occurs when a signal
enters or leaves a window you specify with the high level or low level parameters.

When you initiate an acquisition, the digitizer waits for the start trigger, which is configured through
the niscope.Session.acq_arm_source (Start Trigger Source) property. The default is imme-
diate. Upon receiving the start trigger the digitizer begins sampling pretrigger points. After the
digitizer finishes sampling pretrigger points, the digitizer waits for a reference (stop) trigger that you
specify with a method such as this one. Upon receiving the reference trigger the digitizer finishes the
acquisition after completing posttrigger sampling. With each Configure Trigger method, you specify
configuration parameters such as the trigger source and the amount of trigger delay.

To trigger the acquisition, use niscope.Session.send_software_trigger_edge().

Note: Some features are not supported by all digitizers.

Parameters

• trigger_source (str) – Specifies the trigger source. Refer to niscope.
Session.trigger_source for defined values.

• low_level (float) – Passes the voltage threshold you want the digitizer to use for
low triggering.

• high_level (float) – Passes the voltage threshold you want the digitizer to use for
high triggering.

• window_mode (niscope.TriggerWindowMode) – Specifies whether you want the
trigger to occur when the signal enters or leaves a window.

• trigger_coupling (niscope.TriggerCoupling) – Applies coupling and filter-
ing options to the trigger signal. Refer to niscope.Session.trigger_coupling
for more information.

• holdoff (hightime.timedelta, datetime.timedelta, or float in
seconds) – The length of time the digitizer waits after detecting a trigger before
enabling NI-SCOPE to detect another trigger. Refer to niscope.Session.
trigger_holdoff for more information.

• delay (hightime.timedelta, datetime.timedelta, or float in
seconds) – How long the digitizer waits after receiving the trigger to start
acquiring data. Refer to niscope.Session.trigger_delay_time for more
information.

20 Chapter 4. Bugs / Feature Requests

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI-SCOPE Python API Documentation, Release 1.4.7

configure_vertical

niscope.Session.configure_vertical(range, coupling, offset=0.0, probe_attenuation=1.0,
enabled=True)

Configures the most commonly configured properties of the digitizer vertical subsystem, such as the
range, offset, coupling, probe attenuation, and the channel.

Tip: This method can be called on specific channels within your niscope.Session instance. Use
Python index notation on the repeated capabilities container channels to specify a subset, and then
call this method on the result.

Example: my_session.channels[...].configure_vertical()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.configure_vertical()

Parameters

• range (float) – Specifies the vertical range Refer to niscope.Session.
vertical_range for more information.

• coupling (niscope.VerticalCoupling) – Specifies how to couple the input sig-
nal. Refer to niscope.Session.vertical_coupling for more information.

• offset (float) – Specifies the vertical offset. Refer to niscope.Session.
vertical_offset for more information.

• probe_attenuation (float) – Specifies the probe attenuation. Refer to
niscope.Session.probe_attenuation for valid values.

• enabled (bool) – Specifies whether the channel is enabled for acquisition. Refer to
niscope.Session.channel_enabled for more information.

disable

niscope.Session.disable()

Aborts any current operation, opens data channel relays, and releases RTSI and PFI lines.

export_attribute_configuration_buffer

niscope.Session.export_attribute_configuration_buffer()

Exports the property configuration of the session to a configuration buffer.

You can export and import session property configurations only between devices with identical model
numbers, channel counts, and onboard memory sizes.

This method verifies that the properties you have configured for the session are valid. If the config-
uration is invalid, NI-SCOPE returns an error.

Related Topics:

Properties and Property Methods

Setting Properties Before Reading Properties

4.1. niscope module 21

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

NI-SCOPE Python API Documentation, Release 1.4.7

Return type
bytes

Returns
Specifies the byte array buffer to be populated with the exported property configuration.

export_attribute_configuration_file

niscope.Session.export_attribute_configuration_file(file_path)
Exports the property configuration of the session to the specified file.

You can export and import session property configurations only between devices with identical model
numbers, channel counts, and onboard memory sizes.

This method verifies that the properties you have configured for the session are valid. If the config-
uration is invalid, NI-SCOPE returns an error.

Related Topics:

Properties and Property Methods

Setting Properties Before Reading Properties

Parameters
file_path (str) – Specifies the absolute path to the file to contain the exported prop-
erty configuration. If you specify an empty or relative path, this method returns an
error. Default file extension: .niscopeconfig

fetch

niscope.Session.fetch(num_samples=None, relative_to=niscope.FetchRelativeTo.PRETRIGGER,
offset=0, record_number=0, num_records=None,
timeout=hightime.timedelta(seconds=5.0))

Returns the waveform from a previously initiated acquisition that the digitizer acquires for the spec-
ified channel. This method returns scaled voltage waveforms.

This method may return multiple waveforms depending on the number of channels, the acquisition
type, and the number of records you specify.

Note: Some functionality, such as time stamping, is not supported in all digitizers.

Tip: This method can be called on specific channels within your niscope.Session instance. Use
Python index notation on the repeated capabilities container channels to specify a subset, and then
call this method on the result.

Example: my_session.channels[...].fetch()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.fetch()

Parameters

22 Chapter 4. Bugs / Feature Requests

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str

NI-SCOPE Python API Documentation, Release 1.4.7

• num_samples (int) – The maximum number of samples to fetch for each waveform.
If the acquisition finishes with fewer points than requested, some devices return par-
tial data if the acquisition finished, was aborted, or a timeout of 0 was used. If it fails
to complete within the timeout period, the method raises.

• relative_to (niscope.FetchRelativeTo) – Position to start fetching within
one record.

• offset (int) – Offset in samples to start fetching data within each record. The
offset can be positive or negative.

• record_number (int) – Zero-based index of the first record to fetch.

• num_records (int) – Number of records to fetch. Use -1 to fetch all configured
records.

• timeout (hightime.timedelta, datetime.timedelta, or float in
seconds) – The time to wait for data to be acquired; using 0 for this parameter
tells NI-SCOPE to fetch whatever is currently available. Using -1 seconds for this
parameter implies infinite timeout.

Return type
list of WaveformInfo

Returns

Returns a list of class instances with the following timing and scaling information about
each waveform:

• relative_initial_x (float) the time (in seconds) from the trigger to the first sample in
the fetched waveform

• absolute_initial_x (float) timestamp (in seconds) of the first fetched sample. This
timestamp is comparable between records and acquisitions; devices that do not sup-
port this parameter use 0 for this output.

• x_increment (float) the time between points in the acquired waveform in seconds

• channel (str) channel name this waveform was acquired from

• record (int) record number of this waveform

• gain (float) the gain factor of the given channel; useful for scaling binary data with
the following formula:

𝑣𝑜𝑙𝑡𝑎𝑔𝑒 = 𝑏𝑖𝑛𝑎𝑟𝑦𝑑𝑎𝑡𝑎 * 𝑔𝑎𝑖𝑛𝑓𝑎𝑐𝑡𝑜𝑟 + 𝑜𝑓𝑓𝑠𝑒𝑡

• offset (float) the offset factor of the given channel; useful for scaling binary data with
the following formula:

𝑣𝑜𝑙𝑡𝑎𝑔𝑒 = 𝑏𝑖𝑛𝑎𝑟𝑦𝑑𝑎𝑡𝑎 * 𝑔𝑎𝑖𝑛𝑓𝑎𝑐𝑡𝑜𝑟 + 𝑜𝑓𝑓𝑠𝑒𝑡

• samples (array of float) floating point array of samples. Length will be of the actual
samples acquired

4.1. niscope module 23

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#list

NI-SCOPE Python API Documentation, Release 1.4.7

fetch_array_measurement

niscope.Session.fetch_array_measurement(array_meas_function, meas_wfm_size=None, rela-
tive_to=niscope.FetchRelativeTo.PRETRIGGER,
offset=0, record_number=0, num_records=None,
meas_num_samples=None,
timeout=hightime.timedelta(seconds=5.0))

Obtains a waveform from the digitizer and returns the specified measurement array. This method
may return multiple waveforms depending on the number of channels, the acquisition type, and the
number of records you specify.

Note: Some functionality, such as time stamping, is not supported in all digitizers.

Tip: This method can be called on specific channels within your niscope.Session instance. Use
Python index notation on the repeated capabilities container channels to specify a subset, and then
call this method on the result.

Example: my_session.channels[...].fetch_array_measurement()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.fetch_array_measurement()

Parameters

• array_meas_function (niscope.ArrayMeasurement) – The array measure-
ment to perform.

• meas_wfm_size (int) – The maximum number of samples returned in the mea-
surement waveform array for each waveform measurement. Default Value: None
(returns all available samples).

• relative_to (niscope.FetchRelativeTo) – Position to start fetching within
one record.

• offset (int) – Offset in samples to start fetching data within each record. The
offset can be positive or negative.

• record_number (int) – Zero-based index of the first record to fetch.

• num_records (int) – Number of records to fetch. Use None to fetch all configured
records.

• meas_num_samples (int) – Number of samples to fetch when performing a mea-
surement. Use None to fetch the actual record length.

• timeout (hightime.timedelta, datetime.timedelta, or float in
seconds) – The time to wait in seconds for data to be acquired; using 0 for this
parameter tells NI-SCOPE to fetch whatever is currently available. Using -1 for this
parameter implies infinite timeout.

Return type
list of WaveformInfo

Returns

24 Chapter 4. Bugs / Feature Requests

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#list

NI-SCOPE Python API Documentation, Release 1.4.7

Returns a list of class instances with the following timing and scaling information about
each waveform:

• relativeInitialX—the time (in seconds) from the trigger to the first sample in the
fetched waveform

• absoluteInitialX—timestamp (in seconds) of the first fetched sample. This times-
tamp is comparable between records and acquisitions; devices that do not support
this parameter use 0 for this output.

• xIncrement—the time between points in the acquired waveform in seconds

• channel-channel name this waveform was acquired from

• record-record number of this waveform

• gain—the gain factor of the given channel; useful for scaling binary data with the
following formula:

voltage = binary data × gain factor + offset

• offset—the offset factor of the given channel; useful for scaling binary data with the
following formula:

voltage = binary data × gain factor + offset

• samples-floating point array of samples. Length will be of actual samples acquired.

fetch_into

niscope.Session.fetch_into(waveform, relative_to=niscope.FetchRelativeTo.PRETRIGGER,
offset=0, record_number=0, num_records=None,
timeout=hightime.timedelta(seconds=5.0))

Returns the waveform from a previously initiated acquisition that the digitizer acquires for the spec-
ified channel. This method returns scaled voltage waveforms.

This method may return multiple waveforms depending on the number of channels, the acquisition
type, and the number of records you specify.

Note: Some functionality, such as time stamping, is not supported in all digitizers.

Tip: This method can be called on specific channels within your niscope.Session instance. Use
Python index notation on the repeated capabilities container channels to specify a subset, and then
call this method on the result.

Example: my_session.channels[...].fetch()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.fetch()

Parameters

• waveform (array.array("d")) – numpy array of the appropriate type and size
that should be acquired as a 1D array. Size should be num_samples times number
of waveforms. Call niscope.Session._actual_num_wfms() to determine the
number of waveforms.

4.1. niscope module 25

https://docs.python.org/3/library/array.html#array.array

NI-SCOPE Python API Documentation, Release 1.4.7

Types supported are

– numpy.float64

– numpy.int8

– numpy.in16

– numpy.int32

Example:

waveform = numpy.ndarray(num_samples * session.actual_num_
→˓wfms(), dtype=numpy.float64)
wfm_info = session['0,1'].fetch_into(waveform, timeout=5.0)

• relative_to (niscope.FetchRelativeTo) – Position to start fetching within
one record.

• offset (int) – Offset in samples to start fetching data within each record.The offset
can be positive or negative.

• record_number (int) – Zero-based index of the first record to fetch.

• num_records (int) – Number of records to fetch. Use -1 to fetch all configured
records.

• timeout (hightime.timedelta, datetime.timedelta, or float in
seconds) – The time to wait in seconds for data to be acquired; using 0 for this
parameter tells NI-SCOPE to fetch whatever is currently available. Using -1 for this
parameter implies infinite timeout.

Return type
list of WaveformInfo

Returns

Returns a list of class instances with the following timing and scaling information about
each waveform:

• relative_initial_x (float) the time (in seconds) from the trigger to the first sample in
the fetched waveform

• absolute_initial_x (float) timestamp (in seconds) of the first fetched sample. This
timestamp is comparable between records and acquisitions; devices that do not sup-
port this parameter use 0 for this output.

• x_increment (float) the time between points in the acquired waveform in seconds

• channel (str) channel name this waveform was acquired from

• record (int) record number of this waveform

• gain (float) the gain factor of the given channel; useful for scaling binary data with
the following formula:

𝑣𝑜𝑙𝑡𝑎𝑔𝑒 = 𝑏𝑖𝑛𝑎𝑟𝑦𝑑𝑎𝑡𝑎 * 𝑔𝑎𝑖𝑛𝑓𝑎𝑐𝑡𝑜𝑟 + 𝑜𝑓𝑓𝑠𝑒𝑡

• offset (float) the offset factor of the given channel; useful for scaling binary data with
the following formula:

26 Chapter 4. Bugs / Feature Requests

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#list

NI-SCOPE Python API Documentation, Release 1.4.7

𝑣𝑜𝑙𝑡𝑎𝑔𝑒 = 𝑏𝑖𝑛𝑎𝑟𝑦𝑑𝑎𝑡𝑎 * 𝑔𝑎𝑖𝑛𝑓𝑎𝑐𝑡𝑜𝑟 + 𝑜𝑓𝑓𝑠𝑒𝑡

• samples (array of float) floating point array of samples. Length will be of the actual
samples acquired

fetch_measurement_stats

niscope.Session.fetch_measurement_stats(scalar_meas_function, rela-
tive_to=niscope.FetchRelativeTo.PRETRIGGER,
offset=0, record_number=0, num_records=None,
timeout=hightime.timedelta(seconds=5.0))

Obtains a waveform measurement and returns the measurement value. This method may return mul-
tiple statistical results depending on the number of channels, the acquisition type, and the number of
records you specify.

You specify a particular measurement type, such as rise time, frequency, or voltage peak-to-peak.
The waveform on which the digitizer calculates the waveform measurement is from an acquisition
that you previously initiated. The statistics for the specified measurement method are returned, where
the statistics are updated once every acquisition when the specified measurement is fetched by any of
the Fetch Measurement methods. If a Fetch Measurement method has not been called, this method
fetches the data on which to perform the measurement. The statistics are cleared by calling niscope.
Session.clear_waveform_measurement_stats().

Many of the measurements use the low, mid, and high reference levels. You configure the low, mid,
and high references with niscope.Session.meas_chan_low_ref_level, niscope.Session.
meas_chan_mid_ref_level, and niscope.Session.meas_chan_high_ref_level to set each
channel differently.

Tip: This method can be called on specific channels within your niscope.Session instance. Use
Python index notation on the repeated capabilities container channels to specify a subset, and then
call this method on the result.

Example: my_session.channels[...].fetch_measurement_stats()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.fetch_measurement_stats()

Parameters

• scalar_meas_function (niscope.ScalarMeasurement) – The scalar measure-
ment to be performed on each fetched waveform.

• relative_to (niscope.FetchRelativeTo) – Position to start fetching within
one record.

• offset (int) – Offset in samples to start fetching data within each record. The
offset can be positive or negative.

• record_number (int) – Zero-based index of the first record to fetch.

• num_records (int) – Number of records to fetch. Use None to fetch all configured
records.

4.1. niscope module 27

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

NI-SCOPE Python API Documentation, Release 1.4.7

• timeout (hightime.timedelta, datetime.timedelta, or float in
seconds) – The time to wait in seconds for data to be acquired; using 0 for this
parameter tells NI-SCOPE to fetch whatever is currently available. Using -1 for this
parameter implies infinite timeout.

Return type
list of MeasurementStats

Returns

Returns a list of class instances with the following measurement statistics about the
specified measurement:

• result (float): the resulting measurement

• mean (float): the mean scalar value, which is obtained by

averaging each fetch_measurement_stats call - stdev (float): the standard deviations
of the most recent numInStats measurements - min_val (float): the smallest scalar
value acquired (the minimum of the numInStats measurements) - max_val (float):
the largest scalar value acquired (the maximum of the numInStats measurements) -
num_in_stats (int): the number of times fetch_measurement_stats has been called -
channel (str): channel name this result was acquired from - record (int): record number
of this result

get_channel_names

niscope.Session.get_channel_names(indices)
Returns a list of channel names for given channel indices.

Parameters
indices (basic sequence types, str, or int) – Index list for the channels in
the session. Valid values are from zero to the total number of channels in the session
minus one. The index string can be one of the following formats:

• A comma-separated list—for example, “0,2,3,1”

• A range using a hyphen—for example, “0-3”

• A range using a colon—for example, “0:3 “

You can combine comma-separated lists and ranges that use a hyphen or colon. Both
out-of-order and repeated indices are supported (“2,3,0”, “1,2,2,3”). White space char-
acters, including spaces, tabs, feeds, and carriage returns, are allowed between charac-
ters. Ranges can be incrementing or decrementing.

Return type
list of str

Returns
The channel name(s) at the specified indices.

28 Chapter 4. Bugs / Feature Requests

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

NI-SCOPE Python API Documentation, Release 1.4.7

get_equalization_filter_coefficients

niscope.Session.get_equalization_filter_coefficients()

Retrieves the custom coefficients for the equalization FIR filter on the device. This filter is designed
to compensate the input signal for artifacts introduced to the signal outside of the digitizer. Because
this filter is a generic FIR filter, any coefficients are valid. Coefficient values should be between +1
and –1.

Tip: This method can be called on specific channels within your niscope.Session instance. Use
Python index notation on the repeated capabilities container channels to specify a subset, and then
call this method on the result.

Example: my_session.channels[...].get_equalization_filter_coefficients()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.get_equalization_filter_coefficients()

get_ext_cal_last_date_and_time

niscope.Session.get_ext_cal_last_date_and_time()

Returns the date and time of the last external calibration performed.

Return type
hightime.timedelta, datetime.timedelta, or float in seconds

Returns
Indicates the date of the last calibration. A hightime.datetime object is returned, but
only contains resolution to the day.

get_ext_cal_last_temp

niscope.Session.get_ext_cal_last_temp()

Returns the onboard temperature, in degrees Celsius, of an oscilloscope at the time of the last suc-
cessful external calibration. The temperature returned by this node is an onboard temperature read
from a sensor on the surface of the oscilloscope. This temperature should not be confused with the
environmental temperature of the oscilloscope surroundings. During operation, the onboard tem-
perature is normally higher than the environmental temperature. Temperature-sensitive parameters
are calibrated during self-calibration. Therefore, the self-calibration temperature is usually more
important to read than the external calibration temperature.

Return type
float

Returns
Returns the temperature in degrees Celsius during the last calibration.

4.1. niscope module 29

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#float

NI-SCOPE Python API Documentation, Release 1.4.7

get_self_cal_last_date_and_time

niscope.Session.get_self_cal_last_date_and_time()

Returns the date and time of the last self calibration performed.

Return type
hightime.timedelta, datetime.timedelta, or float in seconds

Returns
Indicates the date of the last calibration. A hightime.datetime object is returned, but
only contains resolution to the day.

get_self_cal_last_temp

niscope.Session.get_self_cal_last_temp()

Returns the onboard temperature, in degrees Celsius, of an oscilloscope at the time of the last suc-
cessful self calibration. The temperature returned by this node is an onboard temperature read from
a sensor on the surface of the oscilloscope. This temperature should not be confused with the envi-
ronmental temperature of the oscilloscope surroundings. During operation, the onboard temperature
is normally higher than the environmental temperature. Temperature-sensitive parameters are cali-
brated during self-calibration. Therefore, the self-calibration temperature is usually more important
to read than the external calibration temperature.

Return type
float

Returns
Returns the temperature in degrees Celsius during the last calibration.

import_attribute_configuration_buffer

niscope.Session.import_attribute_configuration_buffer(configuration)
Imports a property configuration to the session from the specified configuration buffer.

You can export and import session property configurations only between devices with identical model
numbers, channel counts, and onboard memory sizes.

Related Topics:

Properties and Property Methods

Setting Properties Before Reading Properties

Note: You cannot call this method while the session is in a running state, such as while acquiring a
signal.

Parameters
configuration (bytes) – Specifies the byte array buffer that contains the property
configuration to import.

30 Chapter 4. Bugs / Feature Requests

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bytes

NI-SCOPE Python API Documentation, Release 1.4.7

import_attribute_configuration_file

niscope.Session.import_attribute_configuration_file(file_path)
Imports a property configuration to the session from the specified file.

You can export and import session property configurations only between devices with identical model
numbers, channel counts, and onboard memory sizes.

Related Topics:

Properties and Property Methods

Setting Properties Before Reading Properties

Note: You cannot call this method while the session is in a running state, such as while acquiring a
signal.

Parameters
file_path (str) – Specifies the absolute path to the file containing the property con-
figuration to import. If you specify an empty or relative path, this method returns an
error. Default File Extension: .niscopeconfig

initiate

niscope.Session.initiate()

Initiates a waveform acquisition.

After calling this method, the digitizer leaves the Idle state and waits for a trigger. The digitizer ac-
quires a waveform for each channel you enable with niscope.Session.configure_vertical().

Note: This method will return a Python context manager that will initiate on entering and abort on
exit.

lock

niscope.Session.lock()

Obtains a multithread lock on the device session. Before doing so, the software waits until all other execution
threads release their locks on the device session.

Other threads may have obtained a lock on this session for the following reasons:

• The application called the niscope.Session.lock() method.

• A call to NI-SCOPE locked the session.

• After a call to the niscope.Session.lock() method returns successfully, no other threads can access
the device session until you call the niscope.Session.unlock() method or exit out of the with block
when using lock context manager.

• Use the niscope.Session.lock()method and the niscope.Session.unlock()method around a se-
quence of calls to instrument driver methods if you require that the device retain its settings through the
end of the sequence.

4.1. niscope module 31

https://docs.python.org/3/library/stdtypes.html#str

NI-SCOPE Python API Documentation, Release 1.4.7

You can safely make nested calls to the niscope.Session.lock() method within the same thread. To com-
pletely unlock the session, you must balance each call to the niscope.Session.lock() method with a call to
the niscope.Session.unlock() method.

One method for ensuring there are the same number of unlock method calls as there is lock calls is to use lock
as a context manager

with niscope.Session('dev1') as session:
with session.lock():

Calls to session within a single lock context

The first with block ensures the session is closed regardless of any exceptions raised

The second with block ensures that unlock is called regardless of any exceptions raised

Return type
context manager

Returns
When used in a with statement, niscope.Session.lock() acts as a context manager and un-
lock will be called when the with block is exited

probe_compensation_signal_start

niscope.Session.probe_compensation_signal_start()

Starts the 1 kHz square wave output on PFI 1 for probe compensation.

probe_compensation_signal_stop

niscope.Session.probe_compensation_signal_stop()

Stops the 1 kHz square wave output on PFI 1 for probe compensation.

read

niscope.Session.read(num_samples=None, relative_to=niscope.FetchRelativeTo.PRETRIGGER,
offset=0, record_number=0, num_records=None,
timeout=hightime.timedelta(seconds=5.0))

Initiates an acquisition, waits for it to complete, and retrieves the data. The process
is similar to calling niscope.Session._initiate_acquisition(), niscope.Session.
acquisition_status(), and niscope.Session.fetch(). The only difference is that
with niscope.Session.read(), you enable all channels specified with channelList be-
fore the acquisition; in the other method, you enable the channels with niscope.Session.
configure_vertical().

This method may return multiple waveforms depending on the number of channels, the acquisition
type, and the number of records you specify.

Note: Some functionality, such as time stamping, is not supported in all digitizers.

32 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

Tip: This method can be called on specific channels within your niscope.Session instance. Use
Python index notation on the repeated capabilities container channels to specify a subset, and then
call this method on the result.

Example: my_session.channels[...].read()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.read()

Parameters

• num_samples (int) – The maximum number of samples to fetch for each waveform.
If the acquisition finishes with fewer points than requested, some devices return par-
tial data if the acquisition finished, was aborted, or a timeout of 0 was used. If it fails
to complete within the timeout period, the method raises.

• relative_to (niscope.FetchRelativeTo) – Position to start fetching within
one record.

• offset (int) – Offset in samples to start fetching data within each record. The
offset can be positive or negative.

• record_number (int) – Zero-based index of the first record to fetch.

• num_records (int) – Number of records to fetch. Use -1 to fetch all configured
records.

• timeout (hightime.timedelta, datetime.timedelta, or float in
seconds) – The time to wait for data to be acquired; using 0 for this parameter
tells NI-SCOPE to fetch whatever is currently available. Using -1 seconds for this
parameter implies infinite timeout.

Return type
list of WaveformInfo

Returns

Returns a list of class instances with the following timing and scaling information about
each waveform:

• relative_initial_x (float) the time (in seconds) from the trigger to the first sample in
the fetched waveform

• absolute_initial_x (float) timestamp (in seconds) of the first fetched sample. This
timestamp is comparable between records and acquisitions; devices that do not sup-
port this parameter use 0 for this output.

• x_increment (float) the time between points in the acquired waveform in seconds

• channel (str) channel name this waveform was acquired from

• record (int) record number of this waveform

• gain (float) the gain factor of the given channel; useful for scaling binary data with
the following formula:

𝑣𝑜𝑙𝑡𝑎𝑔𝑒 = 𝑏𝑖𝑛𝑎𝑟𝑦𝑑𝑎𝑡𝑎 * 𝑔𝑎𝑖𝑛𝑓𝑎𝑐𝑡𝑜𝑟 + 𝑜𝑓𝑓𝑠𝑒𝑡

4.1. niscope module 33

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#list

NI-SCOPE Python API Documentation, Release 1.4.7

• offset (float) the offset factor of the given channel; useful for scaling binary data with
the following formula:

𝑣𝑜𝑙𝑡𝑎𝑔𝑒 = 𝑏𝑖𝑛𝑎𝑟𝑦𝑑𝑎𝑡𝑎 * 𝑔𝑎𝑖𝑛𝑓𝑎𝑐𝑡𝑜𝑟 + 𝑜𝑓𝑓𝑠𝑒𝑡

• samples (array of float) floating point array of samples. Length will be of the actual
samples acquired

reset

niscope.Session.reset()

Stops the acquisition, releases routes, and all session properties are reset to their default states.

reset_device

niscope.Session.reset_device()

Performs a hard reset of the device. Acquisition stops, all routes are released, RTSI and PFI lines
are tristated, hardware is configured to its default state, and all session properties are reset to their
default state.

• Thermal Shutdown

reset_with_defaults

niscope.Session.reset_with_defaults()

Performs a software reset of the device, returning it to the default state and applying any initial default
settings from the IVI Configuration Store.

self_cal

niscope.Session.self_cal(option=niscope.Option.SELF_CALIBRATE_ALL_CHANNELS)
Self-calibrates most NI digitizers, including all SMC-based devices and most Traditional NI-DAQ
(Legacy) devices. To verify that your digitizer supports self-calibration, refer to Features Supported
by Device.

For SMC-based digitizers, if the self-calibration is performed successfully in a regular session, the
calibration constants are immediately stored in the self-calibration area of the EEPROM. If the self-
calibration is performed in an external calibration session, the calibration constants take effect imme-
diately for the duration of the session. However, they are not stored in the EEPROM until niscope.
Session.CalEnd() is called with action set to NISCOPE_VAL_ACTION_STORE and no errors occur.

Note: One or more of the referenced methods are not in the Python API for this driver.

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

34 Chapter 4. Bugs / Feature Requests

REPLACE_DRIVER_SPECIFIC_URL_2(scopefunc.chm','cviattribute_defaults)
digitizers.chm::/Thermal_Shutdown.html

NI-SCOPE Python API Documentation, Release 1.4.7

Tip: This method can be called on specific channels within your niscope.Session instance. Use
Python index notation on the repeated capabilities container channels to specify a subset, and then
call this method on the result.

Example: my_session.channels[...].self_cal()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.self_cal()

Parameters
option (niscope.Option) – The calibration option. Use VI_NULL for a normal
self-calibration operation or NISCOPE_VAL_CAL_RESTORE_EXTERNAL_CALIBRATION
to restore the previous calibration.

Note: One or more of the referenced values are not in the Python API for this driver.
Enums that only define values, or represent True/False, have been removed.

self_test

niscope.Session.self_test()

Runs the instrument self-test routine and returns the test result(s). Refer to the device-specific help
topics for an explanation of the message contents.

Raises SelfTestError on self test failure. Properties on exception object:

• code - failure code from driver

• message - status message from driver

Self-Test Code Description
0 Passed self-test
1 Self-test failed

send_software_trigger_edge

niscope.Session.send_software_trigger_edge(which_trigger)
Sends the selected trigger to the digitizer. Call this method if you called niscope.Session.
configure_trigger_software() when you want the Reference trigger to occur. You can also
call this method to override a misused edge, digital, or hysteresis trigger. If you have configured
niscope.Session.acq_arm_source, niscope.Session.arm_ref_trig_src, or niscope.
Session.adv_trig_src, call this method when you want to send the corresponding trigger to the
digitizer.

Parameters
which_trigger (niscope.WhichTrigger) – Specifies the type of trigger to send to
the digitizer.

Defined Values

4.1. niscope module 35

NI-SCOPE Python API Documentation, Release 1.4.7

START (0L)
ARM_REFERENCE (1L)

REFERENCE (2L)
ADVANCE (3L)

unlock

niscope.Session.unlock()

Releases a lock that you acquired on an device session using niscope.Session.lock(). Refer to niscope.
Session.unlock() for additional information on session locks.

Properties

absolute_sample_clock_offset

niscope.Session.absolute_sample_clock_offset

Gets or sets the absolute time offset of the sample clock relative to the reference clock in terms of
seconds.

Note: Configures the sample clock relationship with respect to the reference clock. This parameter
is factored into NI-TClk adjustments and is typically used to improve the repeatability of NI-TClk
Synchronization. When this parameter is read, the currently programmed value is returned. The
range of the absolute sample clock offset is [-.5 sample clock periods, .5 sample clock periods]. The
default absolute sample clock offset is 0s.

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Clocking:Advanced:Absolute Sample Clock Offset

• C Attribute: NISCOPE_ATTR_ABSOLUTE_SAMPLE_CLOCK_OFFSET

36 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

acquisition_start_time

niscope.Session.acquisition_start_time

Specifies the length of time from the trigger event to the first point in the waveform record in seconds.
If the value is positive, the first point in the waveform record occurs after the trigger event (same
as specifying niscope.Session.trigger_delay_time). If the value is negative, the first point
in the waveform record occurs before the trigger event (same as specifying niscope.Session.
horz_record_ref_position).

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:Advanced:Acquisition Start Time

• C Attribute: NISCOPE_ATTR_ACQUISITION_START_TIME

acquisition_type

niscope.Session.acquisition_type

Specifies how the digitizer acquires data and fills the waveform record.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.AcquisitionType
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Acquisition:Acquisition Type

• C Attribute: NISCOPE_ATTR_ACQUISITION_TYPE

4.1. niscope module 37

NI-SCOPE Python API Documentation, Release 1.4.7

acq_arm_source

niscope.Session.acq_arm_source

Specifies the source the digitizer monitors for a start (acquisition arm) trigger. When
the start trigger is received, the digitizer begins acquiring pretrigger samples. Valid
Values: NISCOPE_VAL_IMMEDIATE (‘VAL_IMMEDIATE’) - Triggers immediately
NISCOPE_VAL_RTSI_0 (‘VAL_RTSI_0’) - RTSI 0 NISCOPE_VAL_RTSI_1 (‘VAL_RTSI_1’) - RTSI
1 NISCOPE_VAL_RTSI_2 (‘VAL_RTSI_2’) - RTSI 2 NISCOPE_VAL_RTSI_3 (‘VAL_RTSI_3’) -
RTSI 3 NISCOPE_VAL_RTSI_4 (‘VAL_RTSI_4’) - RTSI 4 NISCOPE_VAL_RTSI_5 (‘VAL_RTSI_5’)
- RTSI 5 NISCOPE_VAL_RTSI_6 (‘VAL_RTSI_6’) - RTSI 6 NISCOPE_VAL_PFI_0 (‘VAL_PFI_0’)
- PFI 0 NISCOPE_VAL_PFI_1 (‘VAL_PFI_1’) - PFI 1 NISCOPE_VAL_PFI_2 (‘VAL_PFI_2’) - PFI
2 NISCOPE_VAL_PXI_STAR (‘VAL_PXI_STAR’) - PXI Star Trigger

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:Start Trigger (Acq. Arm):Source

• C Attribute: NISCOPE_ATTR_ACQ_ARM_SOURCE

advance_trigger_terminal_name

niscope.Session.advance_trigger_terminal_name

Returns the fully qualified name for the Advance Trigger terminal. You can use this terminal as the
source for another trigger.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:Advance Trigger:Terminal Name

• C Attribute: NISCOPE_ATTR_ADVANCE_TRIGGER_TERMINAL_NAME

38 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

adv_trig_src

niscope.Session.adv_trig_src

Specifies the source the digitizer monitors for an advance trigger. When the advance trigger is re-
ceived, the digitizer begins acquiring pretrigger samples.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:Advance Trigger:Source

• C Attribute: NISCOPE_ATTR_ADV_TRIG_SRC

allow_more_records_than_memory

niscope.Session.allow_more_records_than_memory

Indicates whether more records can be configured with niscope.Session.
configure_horizontal_timing() than fit in the onboard memory. If this property is set
to True, it is necessary to fetch records while the acquisition is in progress. Eventually, some of the
records will be overwritten. An error is returned from the fetch method if you attempt to fetch a
record that has been overwritten.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:Enable Records > Memory

• C Attribute: NISCOPE_ATTR_ALLOW_MORE_RECORDS_THAN_MEMORY

4.1. niscope module 39

NI-SCOPE Python API Documentation, Release 1.4.7

arm_ref_trig_src

niscope.Session.arm_ref_trig_src

Specifies the source the digitizer monitors for an arm reference trigger. When the arm reference
trigger is received, the digitizer begins looking for a reference (stop) trigger from the user-configured
trigger source.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:Arm Reference Trigger:Source

• C Attribute: NISCOPE_ATTR_ARM_REF_TRIG_SRC

backlog

niscope.Session.backlog

Returns the number of samples (niscope.Session.points_done) that have been acquired but not
fetched for the record specified by niscope.Session.fetch_record_number.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Fetch:Fetch Backlog

• C Attribute: NISCOPE_ATTR_BACKLOG

40 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

bandpass_filter_enabled

niscope.Session.bandpass_filter_enabled

Enables the bandpass filter on the specificed channel. The default value is FALSE.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].bandpass_filter_enabled

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.bandpass_filter_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Vertical:Advanced:Bandpass Filter Enabled

• C Attribute: NISCOPE_ATTR_BANDPASS_FILTER_ENABLED

binary_sample_width

niscope.Session.binary_sample_width

Indicates the bit width of the binary data in the acquired waveform. Useful for determining which
Binary Fetch method to use. Compare to niscope.Session.resolution. To configure the device
to store samples with a lower resolution that the native, set this property to the desired binary width.
This can be useful for streaming at faster speeds at the cost of resolution. The least significant bits
will be lost with this configuration. Valid Values: 8, 16, 32

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Acquisition:Binary Sample Width

• C Attribute: NISCOPE_ATTR_BINARY_SAMPLE_WIDTH

4.1. niscope module 41

NI-SCOPE Python API Documentation, Release 1.4.7

cable_sense_mode

niscope.Session.cable_sense_mode

Specifies whether and how the oscilloscope is configured to generate a CableSense signal on the
specified channels when the niscope.Session.CableSenseSignalStart() method is called.

Device-Specific Behavior:

PXIe-5160/5162

• The value of this property must be identical across all channels whose input impedance
is set to 50 ohms.

• If this property is set to a value other than DISABLED for any channel(s), the input
impedance of all channels for which this property is set to DISABLED must be set to 1
M Ohm.

Supported Devices
PXIe-5110
PXIe-5111
PXIe-5113
PXIe-5160
PXIe-5162

Note: the input impedance of the channel(s) to convey the CableSense signal must be set to 50
ohms.

Note: One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.CableSenseMode
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_CABLE_SENSE_MODE

42 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

cable_sense_signal_enable

niscope.Session.cable_sense_signal_enable

TBD

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_CABLE_SENSE_SIGNAL_ENABLE

cable_sense_voltage

niscope.Session.cable_sense_voltage

Returns the voltage of the CableSense signal that is written to the EEPROM of the oscilloscope
during factory calibration.

Supported Devices
PXIe-5110
PXIe-5111
PXIe-5113
PXIe-5160
PXIe-5162

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_CABLE_SENSE_VOLTAGE

4.1. niscope module 43

NI-SCOPE Python API Documentation, Release 1.4.7

channel_count

niscope.Session.channel_count

Indicates the number of channels that the specific instrument driver supports. For channel-based
properties, the IVI engine maintains a separate cache value for each channel.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Driver Capabilities:Channel Count

• C Attribute: NISCOPE_ATTR_CHANNEL_COUNT

channel_enabled

niscope.Session.channel_enabled

Specifies whether the digitizer acquires a waveform for the channel. Valid Values: True (1) - Acquire
data on this channel False (0) - Don’t acquire data on this channel

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].channel_enabled

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.channel_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Vertical:Channel Enabled

• C Attribute: NISCOPE_ATTR_CHANNEL_ENABLED

44 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

channel_terminal_configuration

niscope.Session.channel_terminal_configuration

Specifies the terminal configuration for the channel.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].channel_terminal_configuration

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.channel_terminal_configuration

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.TerminalConfiguration
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Vertical:Channel Terminal Configuration

• C Attribute: NISCOPE_ATTR_CHANNEL_TERMINAL_CONFIGURATION

data_transfer_block_size

niscope.Session.data_transfer_block_size

Specifies the maximum number of samples to transfer at one time from the device to host memory.
Increasing this number should result in better fetching performance because the driver does not need
to restart the transfers as often. However, increasing this number may also increase the amount of
page-locked memory required from the system.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Fetch:Data Transfer Block Size

• C Attribute: NISCOPE_ATTR_DATA_TRANSFER_BLOCK_SIZE

4.1. niscope module 45

NI-SCOPE Python API Documentation, Release 1.4.7

data_transfer_maximum_bandwidth

niscope.Session.data_transfer_maximum_bandwidth

This property specifies the maximum bandwidth that the device is allowed to consume.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Fetch:Advanced:Maximum Bandwidth

• C Attribute: NISCOPE_ATTR_DATA_TRANSFER_MAXIMUM_BANDWIDTH

data_transfer_preferred_packet_size

niscope.Session.data_transfer_preferred_packet_size

This property specifies the size of (read request|memory write) data payload. Due to alignment of
the data buffers, the hardware may not always generate a packet of this size.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Fetch:Advanced:Preferred Packet Size

• C Attribute: NISCOPE_ATTR_DATA_TRANSFER_PREFERRED_PACKET_SIZE

device_temperature

niscope.Session.device_temperature

Returns the temperature of the device in degrees Celsius from the onboard sensor.

Tip: This property can be set/get on specific instruments within your niscope.Session instance.
Use Python index notation on the repeated capabilities container instruments to specify a subset.

Example: my_session.instruments[...].device_temperature

To set/get on all instruments, you can call the property directly on the niscope.Session.

46 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

Example: my_session.device_temperature

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Device:Temperature

• C Attribute: NISCOPE_ATTR_DEVICE_TEMPERATURE

enabled_channels

niscope.Session.enabled_channels

Returns a comma-separated list of the channels enabled for the session in ascending order.

If no channels are enabled, this property returns an empty string, “”. If all channels are enabled, this
property enumerates all of the channels.

Because this property returns channels in ascending order, but the order in which you specify channels
for the input is important, the value of this property may not necessarily reflect the order in which
NI-SCOPE performs certain actions.

Refer to Channel String Syntax in the NI High-Speed Digitizers Help for more information on the
effects of channel order in NI-SCOPE.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_ENABLED_CHANNELS

4.1. niscope module 47

NI-SCOPE Python API Documentation, Release 1.4.7

enable_dc_restore

niscope.Session.enable_dc_restore

Restores the video-triggered data retrieved by the digitizer to the video signal’s zero reference point.
Valid Values: True - Enable DC restore False - Disable DC restore

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Video:Enable DC Restore

• C Attribute: NISCOPE_ATTR_ENABLE_DC_RESTORE

enable_time_interleaved_sampling

niscope.Session.enable_time_interleaved_sampling

Specifies whether the digitizer acquires the waveform using multiple ADCs for the channel enabling
a higher maximum real-time sampling rate. Valid Values: True (1) - Use multiple interleaved ADCs
on this channel False (0) - Use only this channel’s ADC to acquire data for this channel

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].enable_time_interleaved_sampling

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.enable_time_interleaved_sampling

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:Enable Time Interleaved Sampling

• C Attribute: NISCOPE_ATTR_ENABLE_TIME_INTERLEAVED_SAMPLING

48 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

end_of_acquisition_event_output_terminal

niscope.Session.end_of_acquisition_event_output_terminal

Specifies the destination for the End of Acquisition Event. When this event is asserted, the digitizer
has completed sampling for all records. Consult your device documentation for a specific list of valid
destinations.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:End of Acquisition:Output Terminal

• C Attribute: NISCOPE_ATTR_END_OF_ACQUISITION_EVENT_OUTPUT_TERMINAL

end_of_acquisition_event_terminal_name

niscope.Session.end_of_acquisition_event_terminal_name

Returns the fully qualified name for the End of Acquisition Event terminal. You can use this terminal
as the source for a trigger.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:End of Acquisition:Terminal Name

• C Attribute: NISCOPE_ATTR_END_OF_ACQUISITION_EVENT_TERMINAL_NAME

4.1. niscope module 49

NI-SCOPE Python API Documentation, Release 1.4.7

end_of_record_event_output_terminal

niscope.Session.end_of_record_event_output_terminal

Specifies the destination for the End of Record Event. When this event is asserted, the digitizer has
completed sampling for the current record. Consult your device documentation for a specific list of
valid destinations.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:End of Record:Output Terminal

• C Attribute: NISCOPE_ATTR_END_OF_RECORD_EVENT_OUTPUT_TERMINAL

end_of_record_event_terminal_name

niscope.Session.end_of_record_event_terminal_name

Returns the fully qualified name for the End of Record Event terminal. You can use this terminal as
the source for a trigger.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:End of Record:Terminal Name

• C Attribute: NISCOPE_ATTR_END_OF_RECORD_EVENT_TERMINAL_NAME

50 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

end_of_record_to_advance_trigger_holdoff

niscope.Session.end_of_record_to_advance_trigger_holdoff

End of Record to Advance Trigger Holdoff is the length of time (in seconds) that a device waits
between the completion of one record and the acquisition of pre-trigger samples for the next record.
During this time, the acquisition engine state delays the transition to the Wait for Advance Trigger
state, and will not store samples in onboard memory, accept an Advance Trigger, or trigger on the
input signal.. Supported Devices: NI 5185/5186

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:End of Record to Advance Trigger Holdoff

• C Attribute: NISCOPE_ATTR_END_OF_RECORD_TO_ADVANCE_TRIGGER_HOLDOFF

equalization_filter_enabled

niscope.Session.equalization_filter_enabled

Enables the onboard signal processing FIR block. This block is connected directly to the input signal.
This filter is designed to compensate the input signal for artifacts introduced to the signal outside of
the digitizer. However, since this is a generic FIR filter any coefficients are valid. Coefficients should
be between +1 and -1 in value.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].equalization_filter_enabled

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.equalization_filter_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Onboard Signal Processing:Equalization:Equalization Filter Enabled

4.1. niscope module 51

NI-SCOPE Python API Documentation, Release 1.4.7

• C Attribute: NISCOPE_ATTR_EQUALIZATION_FILTER_ENABLED

equalization_num_coefficients

niscope.Session.equalization_num_coefficients

Returns the number of coefficients that the FIR filter can accept. This filter is designed to compensate
the input signal for artifacts introduced to the signal outside of the digitizer. However, since this is a
generic FIR filter any coefficients are valid. Coefficients should be between +1 and -1 in value.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].equalization_num_coefficients

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.equalization_num_coefficients

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Onboard Signal Processing:Equalization:Equalization Num Coeffi-
cients

• C Attribute: NISCOPE_ATTR_EQUALIZATION_NUM_COEFFICIENTS

exported_advance_trigger_output_terminal

niscope.Session.exported_advance_trigger_output_terminal

Specifies the destination to export the advance trigger. When the advance trigger is received, the
digitizer begins acquiring samples for the Nth record. Consult your device documentation for a
specific list of valid destinations.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

52 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

• LabVIEW Property: Synchronization:Advance Trigger:Output Terminal

• C Attribute: NISCOPE_ATTR_EXPORTED_ADVANCE_TRIGGER_OUTPUT_TERMINAL

exported_ref_trigger_output_terminal

niscope.Session.exported_ref_trigger_output_terminal

Specifies the destination export for the reference (stop) trigger. Consult your device documentation
for a specific list of valid destinations.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Output Terminal

• C Attribute: NISCOPE_ATTR_EXPORTED_REF_TRIGGER_OUTPUT_TERMINAL

exported_start_trigger_output_terminal

niscope.Session.exported_start_trigger_output_terminal

Specifies the destination to export the Start trigger. When the start trigger is received, the digitizer
begins acquiring samples. Consult your device documentation for a specific list of valid destinations.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:Start Trigger (Acq. Arm):Output Terminal

• C Attribute: NISCOPE_ATTR_EXPORTED_START_TRIGGER_OUTPUT_TERMINAL

4.1. niscope module 53

NI-SCOPE Python API Documentation, Release 1.4.7

flex_fir_antialias_filter_type

niscope.Session.flex_fir_antialias_filter_type

The NI 5922 flexible-resolution digitizer uses an onboard FIR lowpass antialias filter. Use this prop-
erty to select from several types of filters to achieve desired filtering characteristics.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].flex_fir_antialias_filter_type

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.flex_fir_antialias_filter_type

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.FlexFIRAntialiasFilterType
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Vertical:Advanced:Flex FIR Antialias Filter Type

• C Attribute: NISCOPE_ATTR_FLEX_FIR_ANTIALIAS_FILTER_TYPE

fpga_bitfile_path

niscope.Session.fpga_bitfile_path

Gets the absolute file path to the bitfile loaded on the FPGA.

Note: Gets the absolute file path to the bitfile loaded on the FPGA.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Device:FPGA Bitfile Path

• C Attribute: NISCOPE_ATTR_FPGA_BITFILE_PATH

54 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

glitch_condition

niscope.Session.glitch_condition

Specifies whether the oscilloscope triggers on pulses of duration less than or greater than the value
specified by the niscope.Session.glitch_width property.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.GlitchCondition
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_GLITCH_CONDITION

glitch_polarity

niscope.Session.glitch_polarity

Specifies the polarity of pulses that trigger the oscilloscope for glitch triggering.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.GlitchPolarity
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_GLITCH_POLARITY

glitch_width

niscope.Session.glitch_width

Specifies the glitch duration, in seconds.

The oscilloscope triggers when it detects of pulse of duration either less than or greater than this
value depending on the value of the niscope.Session.glitch_condition property.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

4.1. niscope module 55

NI-SCOPE Python API Documentation, Release 1.4.7

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_GLITCH_WIDTH

high_pass_filter_frequency

niscope.Session.high_pass_filter_frequency

Specifies the frequency for the highpass filter in Hz. The device uses one of the valid values listed
below. If an invalid value is specified, no coercion occurs. The default value is 0. (PXIe-5164) Valid
Values: 0 90 450 Related topics: Digital Filtering

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].high_pass_filter_frequency

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.high_pass_filter_frequency

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Vertical:Advanced:High Pass Filter Frequency

• C Attribute: NISCOPE_ATTR_HIGH_PASS_FILTER_FREQUENCY

horz_enforce_realtime

niscope.Session.horz_enforce_realtime

Indicates whether the digitizer enforces real-time measurements or allows equivalent-time measure-
ments.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

56 Chapter 4. Bugs / Feature Requests

digitizers.chm::/Digital_Filtering_Overview.html

NI-SCOPE Python API Documentation, Release 1.4.7

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:Enforce Realtime

• C Attribute: NISCOPE_ATTR_HORZ_ENFORCE_REALTIME

horz_min_num_pts

niscope.Session.horz_min_num_pts

Specifies the minimum number of points you require in the waveform record for each channel. NI-
SCOPE uses the value you specify to configure the record length that the digitizer uses for waveform
acquisition. niscope.Session.horz_record_length returns the actual record length. Valid Val-
ues: 1 - available onboard memory

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:Min Number of Points

• C Attribute: NISCOPE_ATTR_HORZ_MIN_NUM_PTS

horz_num_records

niscope.Session.horz_num_records

Specifies the number of records to acquire. Can be used for multi-record acquisition and single-record
acquisitions. Setting this to 1 indicates a single-record acquisition.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:Number of Records

• C Attribute: NISCOPE_ATTR_HORZ_NUM_RECORDS

4.1. niscope module 57

NI-SCOPE Python API Documentation, Release 1.4.7

horz_record_length

niscope.Session.horz_record_length

Returns the actual number of points the digitizer acquires for each channel. The value is
equal to or greater than the minimum number of points you specify with niscope.Session.
horz_min_num_pts. Allocate a ViReal64 array of this size or greater to pass as the WaveformArray
parameter of the Read and Fetch methods. This property is only valid after a call to the one of the
Configure Horizontal methods.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:Actual Record Length

• C Attribute: NISCOPE_ATTR_HORZ_RECORD_LENGTH

horz_record_ref_position

niscope.Session.horz_record_ref_position

Specifies the position of the Reference Event in the waveform record. When the digitizer detects a
trigger, it waits the length of time the niscope.Session.trigger_delay_time property specifies.
The event that occurs when the delay time elapses is the Reference Event. The Reference Event is
relative to the start of the record and is a percentage of the record length. For example, the value
50.0 corresponds to the center of the waveform record and 0.0 corresponds to the first element in the
waveform record. Valid Values: 0.0 - 100.0

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:Reference Position

• C Attribute: NISCOPE_ATTR_HORZ_RECORD_REF_POSITION

58 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

horz_sample_rate

niscope.Session.horz_sample_rate

Returns the effective sample rate using the current configuration. The units are samples per second.
This property is only valid after a call to the one of the Configure Horizontal methods. Units: Hertz
(Samples / Second)

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:Actual Sample Rate

• C Attribute: NISCOPE_ATTR_HORZ_SAMPLE_RATE

horz_time_per_record

niscope.Session.horz_time_per_record

Specifies the length of time that corresponds to the record length. Units: Seconds

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:Advanced:Time Per Record

• C Attribute: NISCOPE_ATTR_HORZ_TIME_PER_RECORD

input_clock_source

niscope.Session.input_clock_source

Specifies the input source for the PLL reference clock (the 1 MHz to 20 MHz clock on the NI 5122,
the 10 MHz clock for the NI 5112/5620/5621/5911) to which the digitizer will be phase-locked; for
the NI 5102, this is the source of the board clock.

The following table lists the characteristics of this property.

4.1. niscope module 59

NI-SCOPE Python API Documentation, Release 1.4.7

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Clocking:Reference (Input) Clock Source

• C Attribute: NISCOPE_ATTR_INPUT_CLOCK_SOURCE

input_impedance

niscope.Session.input_impedance

Specifies the input impedance for the channel in Ohms.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].input_impedance

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.input_impedance

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Vertical:Input Impedance

• C Attribute: NISCOPE_ATTR_INPUT_IMPEDANCE

60 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

instrument_firmware_revision

niscope.Session.instrument_firmware_revision

A string that contains the firmware revision information for the instrument you are currently using.

Tip: This property can be set/get on specific instruments within your niscope.Session instance.
Use Python index notation on the repeated capabilities container instruments to specify a subset.

Example: my_session.instruments[...].instrument_firmware_revision

To set/get on all instruments, you can call the property directly on the niscope.Session.

Example: my_session.instrument_firmware_revision

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Firmware Revision

• C Attribute: NISCOPE_ATTR_INSTRUMENT_FIRMWARE_REVISION

instrument_manufacturer

niscope.Session.instrument_manufacturer

A string that contains the name of the instrument manufacturer.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Manufacturer

• C Attribute: NISCOPE_ATTR_INSTRUMENT_MANUFACTURER

4.1. niscope module 61

NI-SCOPE Python API Documentation, Release 1.4.7

instrument_model

niscope.Session.instrument_model

A string that contains the model number of the current instrument.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Model

• C Attribute: NISCOPE_ATTR_INSTRUMENT_MODEL

interleaving_offset_correction_enabled

niscope.Session.interleaving_offset_correction_enabled

Enables the interleaving offset correction on the specified channel. The default value is TRUE. Re-
lated topics: Timed Interleaved Sampling

Note: If disabled, warranted specifications are not guaranteed.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].interleaving_offset_correction_enabled

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.interleaving_offset_correction_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Vertical:Advanced:Interleaving Offset Correction Enabled

• C Attribute: NISCOPE_ATTR_INTERLEAVING_OFFSET_CORRECTION_ENABLED

62 Chapter 4. Bugs / Feature Requests

digitizers.chm::/TimeInterleavedSampling.html

NI-SCOPE Python API Documentation, Release 1.4.7

io_resource_descriptor

niscope.Session.io_resource_descriptor

Indicates the resource descriptor the driver uses to identify the physical device. If you initialize the
driver with a logical name, this property contains the resource descriptor that corresponds to the entry
in the IVI Configuration utility. If you initialize the instrument driver with the resource descriptor,
this property contains that value.You can pass a logical name to niscope.Session.Init() or
niscope.Session.__init__(). The IVI Configuration utility must contain an entry for the logical
name. The logical name entry refers to a virtual instrument section in the IVI Configuration file. The
virtual instrument section specifies a physical device and initial user options.

Note: One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Resource De-
scriptor

• C Attribute: NISCOPE_ATTR_IO_RESOURCE_DESCRIPTOR

is_probe_comp_on

niscope.Session.is_probe_comp_on

Tip: This property can be set/get on specific instruments within your niscope.Session instance.
Use Python index notation on the repeated capabilities container instruments to specify a subset.

Example: my_session.instruments[...].is_probe_comp_on

To set/get on all instruments, you can call the property directly on the niscope.Session.

Example: my_session.is_probe_comp_on

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read only
Repeated Capabilities instruments

4.1. niscope module 63

NI-SCOPE Python API Documentation, Release 1.4.7

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_IS_PROBE_COMP_ON

logical_name

niscope.Session.logical_name

A string containing the logical name you specified when opening the current IVI session. You can
pass a logical name to niscope.Session.Init() or niscope.Session.__init__(). The IVI
Configuration utility must contain an entry for the logical name. The logical name entry refers to
a virtual instrument section in the IVI Configuration file. The virtual instrument section specifies a
physical device and initial user options.

Note: One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Logical Name

• C Attribute: NISCOPE_ATTR_LOGICAL_NAME

master_enable

niscope.Session.master_enable

Specifies whether you want the device to be a master or a slave. The master typically originates the
trigger signal and clock sync pulse. For a standalone device, set this property to False.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:Master Enable

• C Attribute: NISCOPE_ATTR_MASTER_ENABLE

64 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

max_input_frequency

niscope.Session.max_input_frequency

Specifies the bandwidth of the channel. Express this value as the frequency at which the
input circuitry attenuates the input signal by 3 dB. The units are hertz. Defined Val-
ues: NISCOPE_VAL_BANDWIDTH_FULL (-1.0) NISCOPE_VAL_BANDWIDTH_DEVICE_DEFAULT
(0.0) NISCOPE_VAL_20MHZ_BANDWIDTH (20000000.0) NISCOPE_VAL_100MHZ_BANDWIDTH
(100000000.0) NISCOPE_VAL_20MHZ_MAX_INPUT_FREQUENCY (20000000.0)
NISCOPE_VAL_100MHZ_MAX_INPUT_FREQUENCY (100000000.0)

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].max_input_frequency

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.max_input_frequency

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Vertical:Maximum Input Frequency

• C Attribute: NISCOPE_ATTR_MAX_INPUT_FREQUENCY

max_real_time_sampling_rate

niscope.Session.max_real_time_sampling_rate

Returns the maximum real time sample rate in Hz.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities None

4.1. niscope module 65

NI-SCOPE Python API Documentation, Release 1.4.7

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:Maximum Real Time Sample Rate

• C Attribute: NISCOPE_ATTR_MAX_REAL_TIME_SAMPLING_RATE

max_ris_rate

niscope.Session.max_ris_rate

Returns the maximum sample rate in RIS mode in Hz.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:Maximum RIS Rate

• C Attribute: NISCOPE_ATTR_MAX_RIS_RATE

meas_array_gain

niscope.Session.meas_array_gain

Every element of an array is multiplied by this scalar value during the Array Gain measurement.
Refer to ARRAY_GAIN for more information. Default: 1.0

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_array_gain

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_array_gain

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

66 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

• LabVIEW Property: Waveform Measurement:Array Gain

• C Attribute: NISCOPE_ATTR_MEAS_ARRAY_GAIN

meas_array_offset

niscope.Session.meas_array_offset

Every element of an array is added to this scalar value during the Array Offset measurement. Refer
to ARRAY_OFFSET for more information. Default: 0.0

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_array_offset

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_array_offset

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Array Offset

• C Attribute: NISCOPE_ATTR_MEAS_ARRAY_OFFSET

meas_chan_high_ref_level

niscope.Session.meas_chan_high_ref_level

Stores the high reference level used in many scalar measurements. Different channels may have dif-
ferent reference levels. Do not use the IVI-defined, nonchannel-based properties such as niscope.
Session.meas_high_ref if you use this property to set various channels to different values. De-
fault: 90%

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_chan_high_ref_level

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_chan_high_ref_level

The following table lists the characteristics of this property.

4.1. niscope module 67

NI-SCOPE Python API Documentation, Release 1.4.7

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Reference Levels:Channel Based High Ref
Level

• C Attribute: NISCOPE_ATTR_MEAS_CHAN_HIGH_REF_LEVEL

meas_chan_low_ref_level

niscope.Session.meas_chan_low_ref_level

Stores the low reference level used in many scalar measurements. Different channels may have dif-
ferent reference levels. Do not use the IVI-defined, nonchannel-based properties such as niscope.
Session.meas_low_ref if you use this property to set various channels to different values. Default:
10%

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_chan_low_ref_level

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_chan_low_ref_level

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Reference Levels:Channel Based Low Ref
Level

• C Attribute: NISCOPE_ATTR_MEAS_CHAN_LOW_REF_LEVEL

68 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

meas_chan_mid_ref_level

niscope.Session.meas_chan_mid_ref_level

Stores the mid reference level used in many scalar measurements. Different channels may have dif-
ferent reference levels. Do not use the IVI-defined, nonchannel-based properties such as niscope.
Session.meas_mid_ref if you use this property to set various channels to different values. Default:
50%

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_chan_mid_ref_level

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_chan_mid_ref_level

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Reference Levels:Channel Based Mid Ref
Level

• C Attribute: NISCOPE_ATTR_MEAS_CHAN_MID_REF_LEVEL

meas_filter_center_freq

niscope.Session.meas_filter_center_freq

The center frequency in hertz for filters of type bandpass and bandstop. The width of the filter is
specified by niscope.Session.meas_filter_width , where the cutoff frequencies are the center
± width. Default: 1.0e6 Hz

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_filter_center_freq

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_filter_center_freq

The following table lists the characteristics of this property.

4.1. niscope module 69

NI-SCOPE Python API Documentation, Release 1.4.7

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Filter:Center Frequency

• C Attribute: NISCOPE_ATTR_MEAS_FILTER_CENTER_FREQ

meas_filter_cutoff_freq

niscope.Session.meas_filter_cutoff_freq

Specifies the cutoff frequency in hertz for filters of type lowpass and highpass. The cutoff frequency
definition varies depending on the filter. Default: 1.0e6 Hz

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_filter_cutoff_freq

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_filter_cutoff_freq

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Filter:Cutoff Frequency

• C Attribute: NISCOPE_ATTR_MEAS_FILTER_CUTOFF_FREQ

70 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

meas_filter_order

niscope.Session.meas_filter_order

Specifies the order of an IIR filter. All positive integers are valid. Default: 2

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_filter_order

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_filter_order

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Filter:IIR Order

• C Attribute: NISCOPE_ATTR_MEAS_FILTER_ORDER

meas_filter_ripple

niscope.Session.meas_filter_ripple

Specifies the amount of ripple in the passband in units of decibels (positive values). Used only for
Chebyshev filters. The more ripple allowed gives a sharper cutoff for a given filter order. Default:
0.1 dB

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_filter_ripple

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_filter_ripple

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

4.1. niscope module 71

NI-SCOPE Python API Documentation, Release 1.4.7

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Filter:Ripple

• C Attribute: NISCOPE_ATTR_MEAS_FILTER_RIPPLE

meas_filter_taps

niscope.Session.meas_filter_taps

Defines the number of taps (coefficients) for an FIR filter. Default: 25

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_filter_taps

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_filter_taps

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Filter:FIR Taps

• C Attribute: NISCOPE_ATTR_MEAS_FILTER_TAPS

meas_filter_transient_waveform_percent

niscope.Session.meas_filter_transient_waveform_percent

The percentage (0 - 100%) of the IIR filtered waveform to eliminate from the beginning of the wave-
form. This allows eliminating the transient portion of the waveform that is undefined due to the
assumptions necessary at the boundary condition. Default: 20.0%

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_filter_transient_waveform_percent

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_filter_transient_waveform_percent

72 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Filter:Percent Waveform Transient

• C Attribute: NISCOPE_ATTR_MEAS_FILTER_TRANSIENT_WAVEFORM_PERCENT

meas_filter_type

niscope.Session.meas_filter_type

Specifies the type of filter, for both IIR and FIR filters. The allowed values are
the following: · NISCOPE_VAL_MEAS_LOWPASS · NISCOPE_VAL_MEAS_HIGHPASS
· NISCOPE_VAL_MEAS_BANDPASS · NISCOPE_VAL_MEAS_BANDSTOP Default:
NISCOPE_VAL_MEAS_LOWPASS

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_filter_type

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_filter_type

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.FilterType
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Filter:Type

• C Attribute: NISCOPE_ATTR_MEAS_FILTER_TYPE

4.1. niscope module 73

NI-SCOPE Python API Documentation, Release 1.4.7

meas_filter_width

niscope.Session.meas_filter_width

Specifies the width of bandpass and bandstop type filters in hertz. The cutoff frequencies occur at
niscope.Session.meas_filter_center_freq ± one-half width. Default: 1.0e3 Hz

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_filter_width

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_filter_width

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Filter:Width

• C Attribute: NISCOPE_ATTR_MEAS_FILTER_WIDTH

meas_fir_filter_window

niscope.Session.meas_fir_filter_window

Specifies the FIR window type. The possible choices are: NONE HANNING_WINDOW
HAMMING_WINDOW TRIANGLE_WINDOW FLAT_TOP_WINDOW BLACKMAN_WINDOW The symmetric
windows are applied to the FIR filter coefficients to limit passband ripple in FIR filters. Default:
NONE

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_fir_filter_window

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_fir_filter_window

The following table lists the characteristics of this property.

74 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

Characteristic Value
Datatype enums.FIRFilterWindow
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Filter:FIR Window

• C Attribute: NISCOPE_ATTR_MEAS_FIR_FILTER_WINDOW

meas_high_ref

niscope.Session.meas_high_ref

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_MEAS_HIGH_REF

meas_hysteresis_percent

niscope.Session.meas_hysteresis_percent

Digital hysteresis that is used in several of the scalar waveform measurements. This property specifies
the percentage of the full-scale vertical range for the hysteresis window size. Default: 2%

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_hysteresis_percent

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_hysteresis_percent

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

4.1. niscope module 75

NI-SCOPE Python API Documentation, Release 1.4.7

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Hysteresis Percent

• C Attribute: NISCOPE_ATTR_MEAS_HYSTERESIS_PERCENT

meas_interpolation_sampling_factor

niscope.Session.meas_interpolation_sampling_factor

The new number of points for polynomial interpolation is the sampling factor times the in-
put number of points. For example, if you acquire 1,000 points with the digitizer and set
this property to 2.5, calling niscope.Session.FetchWaveformMeasurementArray() with the
POLYNOMIAL_INTERPOLATION measurement resamples the waveform to 2,500 points. Default: 2.0

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_interpolation_sampling_factor

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_interpolation_sampling_factor

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Interpolation:Sampling Factor

• C Attribute: NISCOPE_ATTR_MEAS_INTERPOLATION_SAMPLING_FACTOR

meas_last_acq_histogram_size

niscope.Session.meas_last_acq_histogram_size

Specifies the size (that is, the number of bins) in the last acquisition histogram. This histogram is used
to determine several scalar measurements, most importantly voltage low and voltage high. Default:
256

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

76 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

Example: my_session.channels[...].meas_last_acq_histogram_size

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_last_acq_histogram_size

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Last Acq. Histogram Size

• C Attribute: NISCOPE_ATTR_MEAS_LAST_ACQ_HISTOGRAM_SIZE

meas_low_ref

niscope.Session.meas_low_ref

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_MEAS_LOW_REF

meas_mid_ref

niscope.Session.meas_mid_ref

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

4.1. niscope module 77

NI-SCOPE Python API Documentation, Release 1.4.7

• C Attribute: NISCOPE_ATTR_MEAS_MID_REF

meas_other_channel

niscope.Session.meas_other_channel

Specifies the second channel for two-channel measurements, such as ADD_CHANNELS. If processing
steps are registered with this channel, the processing is done before the waveform is used in a two-
channel measurement. Default: ‘0’

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_other_channel

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_other_channel

The following table lists the characteristics of this property.

Characteristic Value
Datatype str or int
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Other Channel

• C Attribute: NISCOPE_ATTR_MEAS_OTHER_CHANNEL

meas_percentage_method

niscope.Session.meas_percentage_method

Specifies the method used to map percentage reference units to voltages for the refer-
ence. Possible values are: NISCOPE_VAL_MEAS_LOW_HIGH NISCOPE_VAL_MEAS_MIN_MAX
NISCOPE_VAL_MEAS_BASE_TOP Default: NISCOPE_VAL_MEAS_BASE_TOP

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_percentage_method

To set/get on all channels, you can call the property directly on the niscope.Session.

78 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

Example: my_session.meas_percentage_method

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.PercentageMethod
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Reference Levels:Percentage Units Method

• C Attribute: NISCOPE_ATTR_MEAS_PERCENTAGE_METHOD

meas_polynomial_interpolation_order

niscope.Session.meas_polynomial_interpolation_order

Specifies the polynomial order used for the polynomial interpolation measurement. For example, an
order of 1 is linear interpolation whereas an order of 2 specifies parabolic interpolation. Any positive
integer is valid. Default: 1

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_polynomial_interpolation_order

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_polynomial_interpolation_order

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Interpolation:Polynomial Interpolation Or-
der

• C Attribute: NISCOPE_ATTR_MEAS_POLYNOMIAL_INTERPOLATION_ORDER

4.1. niscope module 79

NI-SCOPE Python API Documentation, Release 1.4.7

meas_ref_level_units

niscope.Session.meas_ref_level_units

Specifies the units of the reference levels. NISCOPE_VAL_MEAS_VOLTAGE–Specifies that the refer-
ence levels are given in units of volts NISCOPE_VAL_MEAS_PERCENTAGE–Percentage units, where
the measurements voltage low and voltage high represent 0% and 100%, respectively. Default:
NISCOPE_VAL_MEAS_PERCENTAGE

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_ref_level_units

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_ref_level_units

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.RefLevelUnits
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Reference Levels:Units

• C Attribute: NISCOPE_ATTR_MEAS_REF_LEVEL_UNITS

meas_time_histogram_high_time

niscope.Session.meas_time_histogram_high_time

Specifies the highest time value included in the multiple acquisition time histogram. The units are
always seconds. Default: 5.0e-4 seconds

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_time_histogram_high_time

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_time_histogram_high_time

The following table lists the characteristics of this property.

80 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Time Histogram:High Time

• C Attribute: NISCOPE_ATTR_MEAS_TIME_HISTOGRAM_HIGH_TIME

meas_time_histogram_high_volts

niscope.Session.meas_time_histogram_high_volts

Specifies the highest voltage value included in the multiple-acquisition time histogram. The units are
always volts. Default: 10.0 V

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_time_histogram_high_volts

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_time_histogram_high_volts

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Time Histogram:High Volts

• C Attribute: NISCOPE_ATTR_MEAS_TIME_HISTOGRAM_HIGH_VOLTS

4.1. niscope module 81

NI-SCOPE Python API Documentation, Release 1.4.7

meas_time_histogram_low_time

niscope.Session.meas_time_histogram_low_time

Specifies the lowest time value included in the multiple-acquisition time histogram. The units are
always seconds. Default: -5.0e-4 seconds

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_time_histogram_low_time

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_time_histogram_low_time

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Time Histogram:Low Time

• C Attribute: NISCOPE_ATTR_MEAS_TIME_HISTOGRAM_LOW_TIME

meas_time_histogram_low_volts

niscope.Session.meas_time_histogram_low_volts

Specifies the lowest voltage value included in the multiple acquisition time histogram. The units are
always volts. Default: -10.0 V

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_time_histogram_low_volts

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_time_histogram_low_volts

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

82 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Time Histogram:Low Volts

• C Attribute: NISCOPE_ATTR_MEAS_TIME_HISTOGRAM_LOW_VOLTS

meas_time_histogram_size

niscope.Session.meas_time_histogram_size

Determines the multiple acquisition voltage histogram size. The size is set during the first call to
a time histogram measurement after clearing the measurement history with niscope.Session.
clear_waveform_measurement_stats(). Default: 256

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_time_histogram_size

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_time_histogram_size

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Time Histogram:Size

• C Attribute: NISCOPE_ATTR_MEAS_TIME_HISTOGRAM_SIZE

meas_voltage_histogram_high_volts

niscope.Session.meas_voltage_histogram_high_volts

Specifies the highest voltage value included in the multiple acquisition voltage histogram. The units
are always volts. Default: 10.0 V

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_voltage_histogram_high_volts

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_voltage_histogram_high_volts

4.1. niscope module 83

NI-SCOPE Python API Documentation, Release 1.4.7

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Voltage Histogram:High Volts

• C Attribute: NISCOPE_ATTR_MEAS_VOLTAGE_HISTOGRAM_HIGH_VOLTS

meas_voltage_histogram_low_volts

niscope.Session.meas_voltage_histogram_low_volts

Specifies the lowest voltage value included in the multiple-acquisition voltage histogram. The units
are always volts. Default: -10.0 V

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_voltage_histogram_low_volts

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_voltage_histogram_low_volts

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Voltage Histogram:Low Volts

• C Attribute: NISCOPE_ATTR_MEAS_VOLTAGE_HISTOGRAM_LOW_VOLTS

84 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

meas_voltage_histogram_size

niscope.Session.meas_voltage_histogram_size

Determines the multiple acquisition voltage histogram size. The size is set the first time a voltage
histogram measurement is called after clearing the measurement history with the method niscope.
Session.clear_waveform_measurement_stats(). Default: 256

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_voltage_histogram_size

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_voltage_histogram_size

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Waveform Measurement:Voltage Histogram:Size

• C Attribute: NISCOPE_ATTR_MEAS_VOLTAGE_HISTOGRAM_SIZE

min_sample_rate

niscope.Session.min_sample_rate

Specify the sampling rate for the acquisition in Samples per second. Valid Values: The combination
of sampling rate and min record length must allow the digitizer to sample at a valid sampling rate for
the acquisition type specified in niscope.Session.ConfigureAcquisition() and not require
more memory than the onboard memory module allows.

Note: One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

4.1. niscope module 85

NI-SCOPE Python API Documentation, Release 1.4.7

• LabVIEW Property: Horizontal:Min Sample Rate

• C Attribute: NISCOPE_ATTR_MIN_SAMPLE_RATE

onboard_memory_size

niscope.Session.onboard_memory_size

Returns the total combined amount of onboard memory for all channels in bytes.

Tip: This property can be set/get on specific instruments within your niscope.Session instance.
Use Python index notation on the repeated capabilities container instruments to specify a subset.

Example: my_session.instruments[...].onboard_memory_size

To set/get on all instruments, you can call the property directly on the niscope.Session.

Example: my_session.onboard_memory_size

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:Memory Size

• C Attribute: NISCOPE_ATTR_ONBOARD_MEMORY_SIZE

output_clock_source

niscope.Session.output_clock_source

Specifies the output source for the 10 MHz clock to which another digitizer’s sample clock can be
phased-locked.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Clocking:Output Clock Source

86 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

• C Attribute: NISCOPE_ATTR_OUTPUT_CLOCK_SOURCE

pll_lock_status

niscope.Session.pll_lock_status

If TRUE, the PLL has remained locked to the external reference clock since it was last checked. If
FALSE, the PLL has become unlocked from the external reference clock since it was last checked.

Tip: This property can be set/get on specific instruments within your niscope.Session instance.
Use Python index notation on the repeated capabilities container instruments to specify a subset.

Example: my_session.instruments[...].pll_lock_status

To set/get on all instruments, you can call the property directly on the niscope.Session.

Example: my_session.pll_lock_status

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read only
Repeated Capabilities instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Clocking:PLL Lock Status

• C Attribute: NISCOPE_ATTR_PLL_LOCK_STATUS

points_done

niscope.Session.points_done

Actual number of samples acquired in the record specified by niscope.Session.
fetch_record_number from the niscope.Session.fetch_relative_to and niscope.
Session.fetch_offset properties.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Fetch:Points Done

4.1. niscope module 87

NI-SCOPE Python API Documentation, Release 1.4.7

• C Attribute: NISCOPE_ATTR_POINTS_DONE

poll_interval

niscope.Session.poll_interval

Specifies the poll interval in milliseconds to use during RIS acquisitions to check whether the acqui-
sition is complete.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_POLL_INTERVAL

probe_attenuation

niscope.Session.probe_attenuation

Specifies the probe attenuation for the input channel. For example, for a 10:1 probe, set this property
to 10.0. Valid Values: Any positive real number. Typical values are 1, 10, and 100.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].probe_attenuation

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.probe_attenuation

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Vertical:Probe Attenuation

• C Attribute: NISCOPE_ATTR_PROBE_ATTENUATION

88 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

ready_for_advance_event_output_terminal

niscope.Session.ready_for_advance_event_output_terminal

Specifies the destination for the Ready for Advance Event. When this event is asserted, the digitizer
is ready to receive an advance trigger. Consult your device documentation for a specific list of valid
destinations.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:Ready for Advance:Output Terminal

• C Attribute: NISCOPE_ATTR_READY_FOR_ADVANCE_EVENT_OUTPUT_TERMINAL

ready_for_advance_event_terminal_name

niscope.Session.ready_for_advance_event_terminal_name

Returns the fully qualified name for the Ready for Advance Event terminal. You can use this terminal
as the source for a trigger.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:Ready for Advance:Terminal Name

• C Attribute: NISCOPE_ATTR_READY_FOR_ADVANCE_EVENT_TERMINAL_NAME

4.1. niscope module 89

NI-SCOPE Python API Documentation, Release 1.4.7

ready_for_ref_event_output_terminal

niscope.Session.ready_for_ref_event_output_terminal

Specifies the destination for the Ready for Reference Event. When this event is asserted, the digitizer
is ready to receive a reference trigger. Consult your device documentation for a specific list of valid
destinations.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:Ready for Reference:Output Terminal

• C Attribute: NISCOPE_ATTR_READY_FOR_REF_EVENT_OUTPUT_TERMINAL

ready_for_ref_event_terminal_name

niscope.Session.ready_for_ref_event_terminal_name

Returns the fully qualified name for the Ready for Reference Event terminal. You can use this terminal
as the source for a trigger.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:Ready for Reference:Terminal Name

• C Attribute: NISCOPE_ATTR_READY_FOR_REF_EVENT_TERMINAL_NAME

90 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

ready_for_start_event_output_terminal

niscope.Session.ready_for_start_event_output_terminal

Specifies the destination for the Ready for Start Event. When this event is asserted, the digitizer
is ready to receive a start trigger. Consult your device documentation for a specific list of valid
destinations.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:Ready for Start:Output Terminal

• C Attribute: NISCOPE_ATTR_READY_FOR_START_EVENT_OUTPUT_TERMINAL

ready_for_start_event_terminal_name

niscope.Session.ready_for_start_event_terminal_name

Returns the fully qualified name for the Ready for Start Event terminal. You can use this terminal as
the source for a trigger.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:Ready for Start:Terminal Name

• C Attribute: NISCOPE_ATTR_READY_FOR_START_EVENT_TERMINAL_NAME

4.1. niscope module 91

NI-SCOPE Python API Documentation, Release 1.4.7

records_done

niscope.Session.records_done

Specifies the number of records that have been completely acquired.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Fetch:Records Done

• C Attribute: NISCOPE_ATTR_RECORDS_DONE

record_arm_source

niscope.Session.record_arm_source

Specifies the record arm source.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:Record Arm Source

• C Attribute: NISCOPE_ATTR_RECORD_ARM_SOURCE

ref_clk_rate

niscope.Session.ref_clk_rate

If niscope.Session.input_clock_source is an external source, this property specifies the fre-
quency of the input, or reference clock, to which the internal sample clock timebase is synchronized.
The frequency is in hertz.

The following table lists the characteristics of this property.

92 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Clocking:Reference Clock Rate

• C Attribute: NISCOPE_ATTR_REF_CLK_RATE

ref_trigger_detector_location

niscope.Session.ref_trigger_detector_location

Indicates which analog compare circuitry to use on the device.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.RefTriggerDetectorLocation
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Onboard Signal Processing:Ref Trigger Detection Loca-
tion

• C Attribute: NISCOPE_ATTR_REF_TRIGGER_DETECTOR_LOCATION

ref_trigger_minimum_quiet_time

niscope.Session.ref_trigger_minimum_quiet_time

The amount of time the trigger circuit must not detect a signal above the trigger level before the
trigger is armed. This property is useful for triggering at the beginning and not in the middle of
signal bursts.

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

4.1. niscope module 93

NI-SCOPE Python API Documentation, Release 1.4.7

• LabVIEW Property: Triggering:Onboard Signal Processing:Ref Trigger Min Quiet Time

• C Attribute: NISCOPE_ATTR_REF_TRIGGER_MINIMUM_QUIET_TIME

ref_trigger_terminal_name

niscope.Session.ref_trigger_terminal_name

Returns the fully qualified name for the Reference Trigger terminal. You can use this terminal as the
source for another trigger.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Terminal Name

• C Attribute: NISCOPE_ATTR_REF_TRIGGER_TERMINAL_NAME

ref_trig_tdc_enable

niscope.Session.ref_trig_tdc_enable

This property controls whether the TDC is used to compute an accurate trigger.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:Advanced:Enable TDC

• C Attribute: NISCOPE_ATTR_REF_TRIG_TDC_ENABLE

94 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

resolution

niscope.Session.resolution

Indicates the bit width of valid data (as opposed to padding bits) in the acquired waveform. Compare
to niscope.Session.binary_sample_width .

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Acquisition:Resolution

• C Attribute: NISCOPE_ATTR_RESOLUTION

ris_in_auto_setup_enable

niscope.Session.ris_in_auto_setup_enable

Indicates whether the digitizer should use RIS sample rates when searching for a frequency in au-
tosetup. Valid Values: True (1) - Use RIS sample rates in autosetup False (0) - Do not use RIS sample
rates in autosetup

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Acquisition:Advanced:Enable RIS in Auto Setup

• C Attribute: NISCOPE_ATTR_RIS_IN_AUTO_SETUP_ENABLE

4.1. niscope module 95

NI-SCOPE Python API Documentation, Release 1.4.7

ris_method

niscope.Session.ris_method

Specifies the algorithm for random-interleaved sampling, which is used if the sample rate exceeds
the value of niscope.Session.max_real_time_sampling_rate.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.RISMethod
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:RIS Method

• C Attribute: NISCOPE_ATTR_RIS_METHOD

ris_num_averages

niscope.Session.ris_num_averages

The number of averages for each bin in an RIS acquisition. The number of averages times the over-
sampling factor is the minimum number of real-time acquisitions necessary to reconstruct the RIS
waveform. Averaging is useful in RIS because the trigger times are not evenly spaced, so adjacent
points in the reconstructed waveform not be accurately spaced. By averaging, the errors in both time
and voltage are smoothed.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Horizontal:RIS Num Avg

• C Attribute: NISCOPE_ATTR_RIS_NUM_AVERAGES

96 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

runt_high_threshold

niscope.Session.runt_high_threshold

Specifies the higher of two thresholds, in volts, that bound the vertical range to examine for runt
pulses.

The runt threshold that causes the oscilloscope to trigger depends on the runt polarity you select.
Refer to the niscope.Session.runt_polarity property for more information.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_RUNT_HIGH_THRESHOLD

runt_low_threshold

niscope.Session.runt_low_threshold

Specifies the lower of two thresholds, in volts, that bound the vertical range to examine for runt pulses.

The runt threshold that causes the oscilloscope to trigger depends on the runt polarity you select.
Refer to the niscope.Session.runt_polarity property for more information.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_RUNT_LOW_THRESHOLD

4.1. niscope module 97

NI-SCOPE Python API Documentation, Release 1.4.7

runt_polarity

niscope.Session.runt_polarity

Specifies the polarity of pulses that trigger the oscilloscope for runt triggering.

When set to POSITIVE , the oscilloscope triggers when the following conditions are met:

• The leading edge of a pulse crosses the niscope.Session.runt_low_threshold in a
positive direction;

• The trailing edge of the pulse crosses the niscope.Session.runt_low_threshold in a
negative direction; and

• No portion of the pulse crosses the niscope.Session.runt_high_threshold .

When set to NEGATIVE , the oscilloscope triggers when the following conditions are met:

• The leading edge of a pulse crosses the niscope.Session.runt_high_threshold in a
negative direction;

• The trailing edge of the pulse crosses the niscope.Session.runt_high_threshold in
a positive direction; and

• No portion of the pulse crosses the niscope.Session.runt_low_threshold .

When set to EITHER , the oscilloscope triggers in either case.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.RuntPolarity
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_RUNT_POLARITY

runt_time_condition

niscope.Session.runt_time_condition

Specifies whether runt triggers are time qualified, and if so, how the oscilloscope triggers in relation
to the duration range bounded by the niscope.Session.runt_time_low_limit and niscope.
Session.runt_time_high_limit properties.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.RuntTimeCondition
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

98 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

• C Attribute: NISCOPE_ATTR_RUNT_TIME_CONDITION

runt_time_high_limit

niscope.Session.runt_time_high_limit

Specifies, in seconds, the high runt threshold time.

This property sets the upper bound on the duration of runt pulses that may trigger the oscilloscope.
The niscope.Session.runt_time_condition property determines how the oscilloscope trig-
gers in relation to the runt time limits.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_RUNT_TIME_HIGH_LIMIT

runt_time_low_limit

niscope.Session.runt_time_low_limit

Specifies, in seconds, the low runt threshold time.

This property sets the lower bound on the duration of runt pulses that may trigger the oscilloscope.
The niscope.Session.runt_time_condition property determines how the oscilloscope trig-
gers in relation to the runt time limits.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_RUNT_TIME_LOW_LIMIT

4.1. niscope module 99

NI-SCOPE Python API Documentation, Release 1.4.7

sample_mode

niscope.Session.sample_mode

Indicates the sample mode the digitizer is currently using.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Acquisition:Sample Mode

• C Attribute: NISCOPE_ATTR_SAMPLE_MODE

samp_clk_timebase_div

niscope.Session.samp_clk_timebase_div

If niscope.Session.samp_clk_timebase_src is an external source, specifies the ratio between
the sample clock timebase rate and the actual sample rate, which can be slower.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Clocking:Sample Clock Timebase Divisor

• C Attribute: NISCOPE_ATTR_SAMP_CLK_TIMEBASE_DIV

sample_clock_timebase_multiplier

niscope.Session.sample_clock_timebase_multiplier

If niscope.Session.samp_clk_timebase_src is an external source, this property specifies
the ratio between the niscope.Session.samp_clk_timebase_rate and the actual sample
rate, which can be higher. This property can be used in conjunction with niscope.Session.
samp_clk_timebase_div. Some devices use multiple ADCs to sample the same channel at an
effective sample rate that is greater than the specified clock rate. When providing an external sample
clock use this property to indicate when you want a higher sample rate. Valid values for this property
vary by device and current configuration.

100 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

Related topics: Sample Clock

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_SAMP_CLK_TIMEBASE_MULT

samp_clk_timebase_rate

niscope.Session.samp_clk_timebase_rate

If niscope.Session.samp_clk_timebase_src is an external source, specifies the frequency in
hertz of the external clock used as the timebase source.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Clocking:Sample Clock Timebase Rate

• C Attribute: NISCOPE_ATTR_SAMP_CLK_TIMEBASE_RATE

samp_clk_timebase_src

niscope.Session.samp_clk_timebase_src

Specifies the source of the sample clock timebase, which is the timebase used to control waveform
sampling. The actual sample rate may be the timebase itself or a divided version of the timebase,
depending on the niscope.Session.min_sample_rate (for internal sources) or the niscope.
Session.samp_clk_timebase_div (for external sources).

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

4.1. niscope module 101

digitizers.chm::/Sample_Clock.html

NI-SCOPE Python API Documentation, Release 1.4.7

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Clocking:Sample Clock Timebase Source

• C Attribute: NISCOPE_ATTR_SAMP_CLK_TIMEBASE_SRC

serial_number

niscope.Session.serial_number

Returns the serial number of the device.

Tip: This property can be set/get on specific instruments within your niscope.Session instance.
Use Python index notation on the repeated capabilities container instruments to specify a subset.

Example: my_session.instruments[...].serial_number

To set/get on all instruments, you can call the property directly on the niscope.Session.

Example: my_session.serial_number

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Device:Serial Number

• C Attribute: NISCOPE_ATTR_SERIAL_NUMBER

accessory_gain

niscope.Session.accessory_gain

Returns the calibration gain for the current device configuration.

Related topics: NI 5122/5124/5142 Calibration

Note: This property is supported only by the NI PXI-5900 differential amplifier.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].accessory_gain

To set/get on all channels, you can call the property directly on the niscope.Session.

102 Chapter 4. Bugs / Feature Requests

digitizers.chm::/5122_Calibration.html

NI-SCOPE Python API Documentation, Release 1.4.7

Example: my_session.accessory_gain

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_SIGNAL_COND_GAIN

accessory_offset

niscope.Session.accessory_offset

Returns the calibration offset for the current device configuration.

Related topics: NI 5122/5124/5142 Calibration

Note: This property is supported only by the NI PXI-5900 differential amplifier.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].accessory_offset

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.accessory_offset

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_SIGNAL_COND_OFFSET

4.1. niscope module 103

digitizers.chm::/5122_Calibration.html

NI-SCOPE Python API Documentation, Release 1.4.7

simulate

niscope.Session.simulate

Specifies whether or not to simulate instrument driver I/O operations. If simulation is enabled, instru-
ment driver methods perform range checking and call Ivi_GetAttribute and Ivi_SetAttribute meth-
ods, but they do not perform instrument I/O. For output parameters that represent instrument data, the
instrument driver methods return calculated values. The default value is False. Use the niscope.
Session.__init__() method to override this value.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:User Options:Simulate

• C Attribute: NISCOPE_ATTR_SIMULATE

specific_driver_description

niscope.Session.specific_driver_description

A string that contains a brief description of the specific driver

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Driver Identification:Description

• C Attribute: NISCOPE_ATTR_SPECIFIC_DRIVER_DESCRIPTION

104 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

specific_driver_revision

niscope.Session.specific_driver_revision

A string that contains additional version information about this instrument driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Driver Identification:Revision

• C Attribute: NISCOPE_ATTR_SPECIFIC_DRIVER_REVISION

specific_driver_vendor

niscope.Session.specific_driver_vendor

A string that contains the name of the vendor that supplies this driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Driver Identification:Driver Vendor

• C Attribute: NISCOPE_ATTR_SPECIFIC_DRIVER_VENDOR

start_to_ref_trigger_holdoff

niscope.Session.start_to_ref_trigger_holdoff

Pass the length of time you want the digitizer to wait after it starts acquiring data until the digitizer
enables the trigger system to detect a reference (stop) trigger. Units: Seconds Valid Values: 0.0 -
171.8

The following table lists the characteristics of this property.

4.1. niscope module 105

NI-SCOPE Python API Documentation, Release 1.4.7

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Start To Ref Trigger Holdoff

• C Attribute: NISCOPE_ATTR_START_TO_REF_TRIGGER_HOLDOFF

start_trigger_terminal_name

niscope.Session.start_trigger_terminal_name

Returns the fully qualified name for the Start Trigger terminal. You can use this terminal as the source
for another trigger.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Synchronization:Start Trigger (Acq. Arm):Terminal Name

• C Attribute: NISCOPE_ATTR_START_TRIGGER_TERMINAL_NAME

supported_instrument_models

niscope.Session.supported_instrument_models

A string that contains a comma-separated list of the instrument model numbers supported by this
driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

106 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

• LabVIEW Property: Inherent IVI Attributes:Driver Capabilities:Supported Instrument
Models

• C Attribute: NISCOPE_ATTR_SUPPORTED_INSTRUMENT_MODELS

trigger_auto_triggered

niscope.Session.trigger_auto_triggered

Specifies if the last acquisition was auto triggered. You can use the Auto Triggered property to find
out if the last acquisition was triggered.

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Auto Triggered

• C Attribute: NISCOPE_ATTR_TRIGGER_AUTO_TRIGGERED

trigger_coupling

niscope.Session.trigger_coupling

Specifies how the digitizer couples the trigger source. This property affects instrument operation
only when niscope.Session.trigger_type is set to EDGE, HYSTERESIS, or WINDOW .

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.TriggerCoupling
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Coupling

• C Attribute: NISCOPE_ATTR_TRIGGER_COUPLING

4.1. niscope module 107

NI-SCOPE Python API Documentation, Release 1.4.7

trigger_delay_time

niscope.Session.trigger_delay_time

Specifies the trigger delay time in seconds. The trigger delay time is the length of time the digitizer
waits after it receives the trigger. The event that occurs when the trigger delay elapses is the Reference
Event. Valid Values: 0.0 - 171.8

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Delay

• C Attribute: NISCOPE_ATTR_TRIGGER_DELAY_TIME

trigger_holdoff

niscope.Session.trigger_holdoff

Specifies the length of time (in seconds) the digitizer waits after detecting a trigger before en-
abling the trigger subsystem to detect another trigger. This property affects instrument opera-
tion only when the digitizer requires multiple acquisitions to build a complete waveform. The
digitizer requires multiple waveform acquisitions when it uses equivalent-time sampling or when
the digitizer is configured for a multi-record acquisition through a call to niscope.Session.
configure_horizontal_timing(). Valid Values: 0.0 - 171.8

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Holdoff

• C Attribute: NISCOPE_ATTR_TRIGGER_HOLDOFF

108 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

trigger_hysteresis

niscope.Session.trigger_hysteresis

Specifies the size of the hysteresis window on either side of the trigger level. The digitizer triggers
when the trigger signal passes through the threshold you specify with the Trigger Level parameter,
has the slope you specify with the Trigger Slope parameter, and passes through the hysteresis window
that you specify with this parameter.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Hysteresis

• C Attribute: NISCOPE_ATTR_TRIGGER_HYSTERESIS

trigger_impedance

niscope.Session.trigger_impedance

Specifies the input impedance for the external analog trigger channel in Ohms. Valid Values: 50 - 50
ohms 1000000 - 1 mega ohm

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Impedance

• C Attribute: NISCOPE_ATTR_TRIGGER_IMPEDANCE

4.1. niscope module 109

NI-SCOPE Python API Documentation, Release 1.4.7

trigger_level

niscope.Session.trigger_level

Specifies the voltage threshold for the trigger subsystem. The units are volts. This property affects in-
strument behavior only when the niscope.Session.trigger_type is set to EDGE, HYSTERESIS,
or WINDOW . Valid Values: The values of the range and offset parameters in niscope.Session.
configure_vertical() determine the valid range for the trigger level on the channel you use as
the Trigger Source. The value you pass for this parameter must meet the following conditions:

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Level

• C Attribute: NISCOPE_ATTR_TRIGGER_LEVEL

trigger_modifier

niscope.Session.trigger_modifier

Configures the device to automatically complete an acquisition if a trigger has not been received.
Valid Values: None (1) - Normal triggering Auto Trigger (2) - Auto trigger acquisition if no trigger
arrives

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.TriggerModifier
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Modifier

• C Attribute: NISCOPE_ATTR_TRIGGER_MODIFIER

110 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

trigger_slope

niscope.Session.trigger_slope

Specifies if a rising or a falling edge triggers the digitizer. This property affects instrument operation
only when niscope.Session.trigger_type is set to EDGE, HYSTERESIS, or WINDOW .

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.TriggerSlope
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Slope

• C Attribute: NISCOPE_ATTR_TRIGGER_SLOPE

trigger_source

niscope.Session.trigger_source

Specifies the source the digitizer monitors for the trigger event.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Source

• C Attribute: NISCOPE_ATTR_TRIGGER_SOURCE

trigger_type

niscope.Session.trigger_type

Specifies the type of trigger to use.

The following table lists the characteristics of this property.

4.1. niscope module 111

NI-SCOPE Python API Documentation, Release 1.4.7

Characteristic Value
Datatype enums.TriggerType
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Type

• C Attribute: NISCOPE_ATTR_TRIGGER_TYPE

trigger_window_high_level

niscope.Session.trigger_window_high_level

Pass the upper voltage threshold you want the digitizer to use for window triggering. The digitizer
triggers when the trigger signal enters or leaves the window you specify with niscope.Session.
trigger_window_low_level and niscope.Session.trigger_window_high_level Valid
Values: The values of the Vertical Range and Vertical Offset parameters in niscope.Session.
configure_vertical() determine the valid range for the High Window Level on the channel you
use as the Trigger Source parameter in niscope.Session.ConfigureTriggerSource(). The
value you pass for this parameter must meet the following conditions. High Trigger Level <= Ver-
tical Range/2 + Vertical Offset High Trigger Level >= (-Vertical Range/2) + Vertical Offset High
Trigger Level > Low Trigger Level

Note: One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Window:High Level

• C Attribute: NISCOPE_ATTR_TRIGGER_WINDOW_HIGH_LEVEL

112 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

trigger_window_low_level

niscope.Session.trigger_window_low_level

Pass the lower voltage threshold you want the digitizer to use for window triggering. The digitizer
triggers when the trigger signal enters or leaves the window you specify with niscope.Session.
trigger_window_low_level and niscope.Session.trigger_window_high_level. Units:
Volts Valid Values: The values of the Vertical Range and Vertical Offset parameters in
niscope.Session.configure_vertical() determine the valid range for the Low Win-
dow Level on the channel you use as the Trigger Source parameter in niscope.Session.
ConfigureTriggerSource(). The value you pass for this parameter must meet the following con-
ditions. Low Trigger Level <= Vertical Range/2 + Vertical Offset Low Trigger Level >= (-Vertical
Range/2) + Vertical Offset Low Trigger Level < High Trigger Level

Note: One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Window:Low Level

• C Attribute: NISCOPE_ATTR_TRIGGER_WINDOW_LOW_LEVEL

trigger_window_mode

niscope.Session.trigger_window_mode

Specifies whether you want a trigger to occur when the signal enters or leaves the win-
dow specified by niscope.Session.trigger_window_low_level, or niscope.Session.
trigger_window_high_level.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.TriggerWindowMode
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Window:Window Mode

• C Attribute: NISCOPE_ATTR_TRIGGER_WINDOW_MODE

4.1. niscope module 113

NI-SCOPE Python API Documentation, Release 1.4.7

tv_trigger_event

niscope.Session.tv_trigger_event

Specifies the condition in the video signal that causes the digitizer to trigger.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.VideoTriggerEvent
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Video:Event

• C Attribute: NISCOPE_ATTR_TV_TRIGGER_EVENT

tv_trigger_line_number

niscope.Session.tv_trigger_line_number

Specifies the line on which to trigger, if niscope.Session.tv_trigger_event is set to line num-
ber. The valid ranges of the property depend on the signal format selected. M-NTSC has a valid
range of 1 to 525. B/G-PAL, SECAM, 576i, and 576p have a valid range of 1 to 625. 720p has a
valid range of 1 to 750. 1080i and 1080p have a valid range of 1125.

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Video:Line Number

• C Attribute: NISCOPE_ATTR_TV_TRIGGER_LINE_NUMBER

114 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

tv_trigger_polarity

niscope.Session.tv_trigger_polarity

Specifies whether the video signal sync is positive or negative.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.VideoPolarity
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Video:Polarity

• C Attribute: NISCOPE_ATTR_TV_TRIGGER_POLARITY

tv_trigger_signal_format

niscope.Session.tv_trigger_signal_format

Specifies the type of video signal, such as NTSC, PAL, or SECAM.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.VideoSignalFormat
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggering:Trigger Video:Signal Format

• C Attribute: NISCOPE_ATTR_TV_TRIGGER_SIGNAL_FORMAT

use_spec_initial_x

niscope.Session.use_spec_initial_x

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

4.1. niscope module 115

NI-SCOPE Python API Documentation, Release 1.4.7

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_USE_SPEC_INITIAL_X

vertical_coupling

niscope.Session.vertical_coupling

Specifies how the digitizer couples the input signal for the channel. When input coupling changes,
the input stage takes a finite amount of time to settle.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].vertical_coupling

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.vertical_coupling

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.VerticalCoupling
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Vertical:Vertical Coupling

• C Attribute: NISCOPE_ATTR_VERTICAL_COUPLING

vertical_offset

niscope.Session.vertical_offset

Specifies the location of the center of the range. The value is with respect to ground and is in volts.
For example, to acquire a sine wave that spans between 0.0 and 10.0 V, set this property to 5.0 V.

Note: This property is not supported by all digitizers.Refer to the NI High-Speed Digitizers Help
for a list of vertical offsets supported for each device.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].vertical_offset

To set/get on all channels, you can call the property directly on the niscope.Session.

116 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

Example: my_session.vertical_offset

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Vertical:Vertical Offset

• C Attribute: NISCOPE_ATTR_VERTICAL_OFFSET

vertical_range

niscope.Session.vertical_range

Specifies the absolute value of the input range for a channel in volts. For example, to acquire a
sine wave that spans between -5 and +5 V, set this property to 10.0 V. Refer to the NI High-Speed
Digitizers Help for a list of supported vertical ranges for each device. If the specified range is not
supported by a device, the value is coerced up to the next valid range.

Tip: This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].vertical_range

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.vertical_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Vertical:Vertical Range

• C Attribute: NISCOPE_ATTR_VERTICAL_RANGE

4.1. niscope module 117

NI-SCOPE Python API Documentation, Release 1.4.7

width_condition

niscope.Session.width_condition

Specifies whether the oscilloscope triggers on pulses within or outside the duration range
bounded by the niscope.Session.width_low_threshold and niscope.Session.
width_high_threshold properties.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.WidthCondition
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_WIDTH_CONDITION

width_high_threshold

niscope.Session.width_high_threshold

Specifies the high width threshold, in seconds.

This properties sets the upper bound on the duration range that triggers the oscilloscope. The
niscope.Session.width_condition property determines how the oscilloscope triggers in re-
lation to the width thresholds.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_WIDTH_HIGH_THRESHOLD

118 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

width_low_threshold

niscope.Session.width_low_threshold

Specifies the low width threshold, in seconds.

This property sets the lower bound on the duration range that triggers the oscilloscope. The niscope.
Session.width_condition property determines how the oscilloscope triggers in relation to the
width thresholds.

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_WIDTH_LOW_THRESHOLD

width_polarity

niscope.Session.width_polarity

Specifies the polarity of pulses that trigger the oscilloscope for width triggering.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.WidthPolarity
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NISCOPE_ATTR_WIDTH_POLARITY

NI-TClk Support

niscope.Session.tclk

This is used to get and set NI-TClk attributes on the session.

See also:

See nitclk.SessionReference for a complete list of attributes.

Session

4.1. niscope module 119

https://nitclk.readthedocs.io/en/latest/class.html#nitclk.SessionReference

NI-SCOPE Python API Documentation, Release 1.4.7

• Session

• Methods

– abort

– acquisition_status

– add_waveform_processing

– auto_setup

– clear_waveform_measurement_stats

– clear_waveform_processing

– close

– commit

– configure_chan_characteristics

– configure_equalization_filter_coefficients

– configure_horizontal_timing

– configure_trigger_digital

– configure_trigger_edge

– configure_trigger_hysteresis

– configure_trigger_immediate

– configure_trigger_software

– configure_trigger_video

– configure_trigger_window

– configure_vertical

– disable

– export_attribute_configuration_buffer

– export_attribute_configuration_file

– fetch

– fetch_array_measurement

– fetch_into

– fetch_measurement_stats

– get_channel_names

– get_equalization_filter_coefficients

– get_ext_cal_last_date_and_time

– get_ext_cal_last_temp

– get_self_cal_last_date_and_time

– get_self_cal_last_temp

– import_attribute_configuration_buffer

120 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

– import_attribute_configuration_file

– initiate

– lock

– probe_compensation_signal_start

– probe_compensation_signal_stop

– read

– reset

– reset_device

– reset_with_defaults

– self_cal

– self_test

– send_software_trigger_edge

– unlock

• Properties

– absolute_sample_clock_offset

– acquisition_start_time

– acquisition_type

– acq_arm_source

– advance_trigger_terminal_name

– adv_trig_src

– allow_more_records_than_memory

– arm_ref_trig_src

– backlog

– bandpass_filter_enabled

– binary_sample_width

– cable_sense_mode

– cable_sense_signal_enable

– cable_sense_voltage

– channel_count

– channel_enabled

– channel_terminal_configuration

– data_transfer_block_size

– data_transfer_maximum_bandwidth

– data_transfer_preferred_packet_size

– device_temperature

4.1. niscope module 121

NI-SCOPE Python API Documentation, Release 1.4.7

– enabled_channels

– enable_dc_restore

– enable_time_interleaved_sampling

– end_of_acquisition_event_output_terminal

– end_of_acquisition_event_terminal_name

– end_of_record_event_output_terminal

– end_of_record_event_terminal_name

– end_of_record_to_advance_trigger_holdoff

– equalization_filter_enabled

– equalization_num_coefficients

– exported_advance_trigger_output_terminal

– exported_ref_trigger_output_terminal

– exported_start_trigger_output_terminal

– flex_fir_antialias_filter_type

– fpga_bitfile_path

– glitch_condition

– glitch_polarity

– glitch_width

– high_pass_filter_frequency

– horz_enforce_realtime

– horz_min_num_pts

– horz_num_records

– horz_record_length

– horz_record_ref_position

– horz_sample_rate

– horz_time_per_record

– input_clock_source

– input_impedance

– instrument_firmware_revision

– instrument_manufacturer

– instrument_model

– interleaving_offset_correction_enabled

– io_resource_descriptor

– is_probe_comp_on

– logical_name

122 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

– master_enable

– max_input_frequency

– max_real_time_sampling_rate

– max_ris_rate

– meas_array_gain

– meas_array_offset

– meas_chan_high_ref_level

– meas_chan_low_ref_level

– meas_chan_mid_ref_level

– meas_filter_center_freq

– meas_filter_cutoff_freq

– meas_filter_order

– meas_filter_ripple

– meas_filter_taps

– meas_filter_transient_waveform_percent

– meas_filter_type

– meas_filter_width

– meas_fir_filter_window

– meas_high_ref

– meas_hysteresis_percent

– meas_interpolation_sampling_factor

– meas_last_acq_histogram_size

– meas_low_ref

– meas_mid_ref

– meas_other_channel

– meas_percentage_method

– meas_polynomial_interpolation_order

– meas_ref_level_units

– meas_time_histogram_high_time

– meas_time_histogram_high_volts

– meas_time_histogram_low_time

– meas_time_histogram_low_volts

– meas_time_histogram_size

– meas_voltage_histogram_high_volts

– meas_voltage_histogram_low_volts

4.1. niscope module 123

NI-SCOPE Python API Documentation, Release 1.4.7

– meas_voltage_histogram_size

– min_sample_rate

– onboard_memory_size

– output_clock_source

– pll_lock_status

– points_done

– poll_interval

– probe_attenuation

– ready_for_advance_event_output_terminal

– ready_for_advance_event_terminal_name

– ready_for_ref_event_output_terminal

– ready_for_ref_event_terminal_name

– ready_for_start_event_output_terminal

– ready_for_start_event_terminal_name

– records_done

– record_arm_source

– ref_clk_rate

– ref_trigger_detector_location

– ref_trigger_minimum_quiet_time

– ref_trigger_terminal_name

– ref_trig_tdc_enable

– resolution

– ris_in_auto_setup_enable

– ris_method

– ris_num_averages

– runt_high_threshold

– runt_low_threshold

– runt_polarity

– runt_time_condition

– runt_time_high_limit

– runt_time_low_limit

– sample_mode

– samp_clk_timebase_div

– sample_clock_timebase_multiplier

– samp_clk_timebase_rate

124 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

– samp_clk_timebase_src

– serial_number

– accessory_gain

– accessory_offset

– simulate

– specific_driver_description

– specific_driver_revision

– specific_driver_vendor

– start_to_ref_trigger_holdoff

– start_trigger_terminal_name

– supported_instrument_models

– trigger_auto_triggered

– trigger_coupling

– trigger_delay_time

– trigger_holdoff

– trigger_hysteresis

– trigger_impedance

– trigger_level

– trigger_modifier

– trigger_slope

– trigger_source

– trigger_type

– trigger_window_high_level

– trigger_window_low_level

– trigger_window_mode

– tv_trigger_event

– tv_trigger_line_number

– tv_trigger_polarity

– tv_trigger_signal_format

– use_spec_initial_x

– vertical_coupling

– vertical_offset

– vertical_range

– width_condition

– width_high_threshold

4.1. niscope module 125

NI-SCOPE Python API Documentation, Release 1.4.7

– width_low_threshold

– width_polarity

• NI-TClk Support

Repeated Capabilities

Repeated capabilities attributes are used to set the channel_string parameter to the underlying driver func-
tion call. This can be the actual function based on the Session method being called, or it can be the
appropriate Get/Set Attribute function, such as niScope_SetAttributeViInt32().

Repeated capabilities attributes use the indexing operator [] to indicate the repeated capabilities. The
parameter can be a string, list, tuple, or slice (range). Each element of those can be a string or an integer.
If it is a string, you can indicate a range using the same format as the driver: '0-2' or '0:2'

Some repeated capabilities use a prefix before the number and this is optional

channels

niscope.Session.channels

session.channels['0-2'].channel_enabled = True

passes a string of '0, 1, 2' to the set attribute function.

instruments

niscope.Session.instruments

session.instruments['0-2'].channel_enabled = True

passes a string of '0, 1, 2' to the set attribute function.

Enums

Enums used in NI-SCOPE

AcquisitionStatus

class niscope.AcquisitionStatus

COMPLETE

IN_PROGRESS

STATUS_UNKNOWN

126 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

AcquisitionType

class niscope.AcquisitionType

NORMAL

Sets the digitizer to normal resolution mode. The digitizer can use real-time sampling or equivalent-time
sampling.

FLEXRES

Sets the digitizer to flexible resolution mode if supported. The digitizer uses different hardware configura-
tions to change the resolution depending on the sampling rate used.

DDC

Sets the digitizer to DDC mode on the NI 5620/5621.

ArrayMeasurement

class niscope.ArrayMeasurement

NO_MEASUREMENT

None

LAST_ACQ_HISTOGRAM

Last Acquisition Histogram

FFT_PHASE_SPECTRUM

FFT Phase Spectrum

FFT_AMP_SPECTRUM_VOLTS_RMS

FFT Amp. Spectrum (Volts RMS)

MULTI_ACQ_VOLTAGE_HISTOGRAM

Multi Acquisition Voltage Histogram

MULTI_ACQ_TIME_HISTOGRAM

Multi Acquisition Time Histogram

ARRAY_INTEGRAL

Array Integral

DERIVATIVE

Derivative

INVERSE

Inverse

HANNING_WINDOW

Hanning Window

FLAT_TOP_WINDOW

Flat Top Window

POLYNOMIAL_INTERPOLATION

Polynomial Interpolation

4.1. niscope module 127

NI-SCOPE Python API Documentation, Release 1.4.7

MULTIPLY_CHANNELS

Multiply Channels

ADD_CHANNELS

Add Channels

SUBTRACT_CHANNELS

Subtract Channels

DIVIDE_CHANNELS

Divide Channels

MULTI_ACQ_AVERAGE

Multi Acquisition Average

BUTTERWORTH_FILTER

Butterworth IIR Filter

CHEBYSHEV_FILTER

Chebyshev IIR Filter

FFT_AMP_SPECTRUM_DB

FFT Amp. Spectrum (dB)

HAMMING_WINDOW

Hamming Window

WINDOWED_FIR_FILTER

FIR Windowed Filter

BESSEL_FILTER

Bessel IIR Filter

TRIANGLE_WINDOW

Triangle Window

BLACKMAN_WINDOW

Blackman Window

ARRAY_OFFSET

Array Offset

ARRAY_GAIN

Array Gain

CableSenseMode

class niscope.CableSenseMode

DISABLED

The oscilloscope is not configured to emit a CableSense signal.

ON_DEMAND

The oscilloscope is configured to emit a single CableSense pulse.

128 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

ClearableMeasurement

class niscope.ClearableMeasurement

ALL_MEASUREMENTS

MULTI_ACQ_VOLTAGE_HISTOGRAM

MULTI_ACQ_TIME_HISTOGRAM

MULTI_ACQ_AVERAGE

FREQUENCY

AVERAGE_FREQUENCY

FFT_FREQUENCY

PERIOD

AVERAGE_PERIOD

RISE_TIME

FALL_TIME

RISE_SLEW_RATE

FALL_SLEW_RATE

OVERSHOOT

PRESHOOT

VOLTAGE_RMS

VOLTAGE_CYCLE_RMS

AC_ESTIMATE

FFT_AMPLITUDE

VOLTAGE_AVERAGE

VOLTAGE_CYCLE_AVERAGE

DC_ESTIMATE

VOLTAGE_MAX

VOLTAGE_MIN

VOLTAGE_PEAK_TO_PEAK

VOLTAGE_HIGH

VOLTAGE_LOW

AMPLITUDE

4.1. niscope module 129

NI-SCOPE Python API Documentation, Release 1.4.7

VOLTAGE_TOP

VOLTAGE_BASE

VOLTAGE_BASE_TO_TOP

WIDTH_NEG

WIDTH_POS

DUTY_CYCLE_NEG

DUTY_CYCLE_POS

INTEGRAL

AREA

CYCLE_AREA

TIME_DELAY

PHASE_DELAY

LOW_REF_VOLTS

MID_REF_VOLTS

HIGH_REF_VOLTS

VOLTAGE_HISTOGRAM_MEAN

VOLTAGE_HISTOGRAM_STDEV

VOLTAGE_HISTOGRAM_MEDIAN

VOLTAGE_HISTOGRAM_MODE

VOLTAGE_HISTOGRAM_MAX

VOLTAGE_HISTOGRAM_MIN

VOLTAGE_HISTOGRAM_PEAK_TO_PEAK

VOLTAGE_HISTOGRAM_MEAN_PLUS_STDEV

VOLTAGE_HISTOGRAM_MEAN_PLUS_2_STDEV

VOLTAGE_HISTOGRAM_MEAN_PLUS_3_STDEV

VOLTAGE_HISTOGRAM_HITS

VOLTAGE_HISTOGRAM_NEW_HITS

TIME_HISTOGRAM_MEAN

TIME_HISTOGRAM_STDEV

TIME_HISTOGRAM_MEDIAN

TIME_HISTOGRAM_MODE

130 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

TIME_HISTOGRAM_MAX

TIME_HISTOGRAM_MIN

TIME_HISTOGRAM_PEAK_TO_PEAK

TIME_HISTOGRAM_MEAN_PLUS_STDEV

TIME_HISTOGRAM_MEAN_PLUS_2_STDEV

TIME_HISTOGRAM_MEAN_PLUS_3_STDEV

TIME_HISTOGRAM_HITS

TIME_HISTOGRAM_NEW_HITS

FIRFilterWindow

class niscope.FIRFilterWindow

NONE

No window.

HANNING

Specifies a Hanning window.

FLAT_TOP

Specifies a Flat Top window.

HAMMING

Specifies a Hamming window.

TRIANGLE

Specifies a Triangle window.

BLACKMAN

Specifies a Blackman window.

FetchRelativeTo

class niscope.FetchRelativeTo

READ_POINTER

The read pointer is set to zero when a new acquisition is initiated. After every fetch the read pointer is
incremeted to be the sample after the last sample retrieved. Therefore, you can repeatedly fetch relative to
the read pointer for a continuous acquisition program.

PRETRIGGER

Fetches relative to the first pretrigger point requested with niscope.Session.
configure_horizontal_timing().

NOW

Fetch data at the last sample acquired.

4.1. niscope module 131

NI-SCOPE Python API Documentation, Release 1.4.7

START

Fetch data starting at the first point sampled by the digitizer.

TRIGGER

Fetch at the first posttrigger sample.

FilterType

class niscope.FilterType

LOWPASS

Specifies lowpass as the filter type.

HIGHPASS

Specifies highpass as the filter type.

BANDPASS

Specifies bandpass as the filter type.

BANDSTOP

Specifies bandstop as the filter type.

FlexFIRAntialiasFilterType

class niscope.FlexFIRAntialiasFilterType

FOURTYEIGHT_TAP_STANDARD

This filter is optimized for alias protection and frequency-domain flatness

FOURTYEIGHT_TAP_HANNING

This filter is optimized for the lowest possible bandwidth for a 48 tap filter and maximizes the SNR

SIXTEEN_TAP_HANNING

This filter is optimized for the lowest possible bandwidth for a 16 tap filter and maximizes the SNR

EIGHT_TAP_HANNING

This filter is optimized for the lowest possible bandwidth for a 8 tap filter and maximizes the SNR

GlitchCondition

class niscope.GlitchCondition

GREATER

Trigger on pulses with a duration greater than the specified glitch width.

LESS

Trigger on pulses with a duration shorter than the specified glitch width.

132 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

GlitchPolarity

class niscope.GlitchPolarity

POSITIVE

Trigger on pulses of positive polarity relative to the trigger threshold.

NEGATIVE

Trigger on pulses of negative polarity relative to the trigger threshold.

EITHER

Trigger on pulses of either positive or negative polarity.

Option

class niscope.Option

SELF_CALIBRATE_ALL_CHANNELS

Self Calibrating all Channels

RESTORE_EXTERNAL_CALIBRATION

Restore External Calibration.

PercentageMethod

class niscope.PercentageMethod

LOWHIGH

Specifies that the reference level percentages should be computed using the low/high method,

MINMAX

Reference level percentages are computed using the min/max method.

BASETOP

Reference level percentages are computed using the base/top method.

RISMethod

class niscope.RISMethod

EXACT_NUM_AVERAGES

Acquires exactly the specified number of records for each bin in the RIS acquisition. An error is returned
from the fetch method if the RIS acquisition does not successfully acquire the specified number of wave-
forms within the timeout period. You may call the fetch method again to allow more time for the acquisition
to finish.

MIN_NUM_AVERAGES

Each RIS sample is the average of a least a minimum number of randomly distributed points.

4.1. niscope module 133

NI-SCOPE Python API Documentation, Release 1.4.7

INCOMPLETE

Returns the RIS waveform after the specified timeout even if it is incomplete. If no waveforms have been
acquired in certain bins, these bins will have a NaN (when fetching scaled data) or a zero (when fetching
binary data). A warning (positive error code) is returned from the fetch method if the RIS acquisition did
not finish. The acquisition aborts when data is returned.

LIMITED_BIN_WIDTH

Limits the waveforms in the various bins to be within 200 ps of the center of the bin.

RefLevelUnits

class niscope.RefLevelUnits

VOLTS

Specifies that the reference levels are given in units of volts.

PERCENTAGE

(Default) Specifies that the reference levels are given in percentage units.

RefTriggerDetectorLocation

class niscope.RefTriggerDetectorLocation

ANALOG_DETECTION_CIRCUIT

use the hardware analog circuitry to implement the reference trigger. This option will trigger before any
onboard signal processing.

DDC_OUTPUT

use the onboard signal processing logic to implement the reference trigger. This option will trigger based
on the onboard signal processed data.

RuntPolarity

class niscope.RuntPolarity

POSITIVE

Trigger on pulses of positive polarity relative to niscope.Session.runt_low_threshold that do not
cross niscope.Session.runt_high_threshold .

NEGATIVE

Trigger on pulses of negative polarity relative to niscope.Session.runt_high_threshold that do not
cross niscope.Session.runt_low_threshold .

EITHER

Trigger on pulses of either positive or negative polarity.

134 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

RuntTimeCondition

class niscope.RuntTimeCondition

NONE

Time qualification is disabled. Trigger on runt pulses based solely on the voltage level of the pulses.

WITHIN

Trigger on pulses that, in addition to meeting runt voltage criteria, have a duration within the range bounded
by niscope.Session.runt_time_low_limit and niscope.Session.runt_time_high_limit.

OUTSIDE

Trigger on pulses that, in addition to meeting runt voltage criteria, have a duration not within
the range bounded by niscope.Session.runt_time_low_limit and niscope.Session.
runt_time_high_limit.

ScalarMeasurement

class niscope.ScalarMeasurement

NO_MEASUREMENT

None

RISE_TIME

FALL_TIME

FREQUENCY

PERIOD

VOLTAGE_RMS

VOLTAGE_PEAK_TO_PEAK

VOLTAGE_MAX

VOLTAGE_MIN

VOLTAGE_HIGH

VOLTAGE_LOW

VOLTAGE_AVERAGE

WIDTH_NEG

WIDTH_POS

DUTY_CYCLE_NEG

DUTY_CYCLE_POS

AMPLITUDE

VOLTAGE_CYCLE_RMS

4.1. niscope module 135

NI-SCOPE Python API Documentation, Release 1.4.7

VOLTAGE_CYCLE_AVERAGE

OVERSHOOT

PRESHOOT

LOW_REF_VOLTS

MID_REF_VOLTS

HIGH_REF_VOLTS

AREA

CYCLE_AREA

INTEGRAL

VOLTAGE_BASE

VOLTAGE_TOP

FFT_FREQUENCY

FFT_AMPLITUDE

RISE_SLEW_RATE

FALL_SLEW_RATE

AC_ESTIMATE

DC_ESTIMATE

TIME_DELAY

AVERAGE_PERIOD

AVERAGE_FREQUENCY

VOLTAGE_BASE_TO_TOP

PHASE_DELAY

TerminalConfiguration

class niscope.TerminalConfiguration

SINGLE_ENDED

Channel is single ended

UNBALANCED_DIFFERENTIAL

Channel is unbalanced differential

DIFFERENTIAL

Channel is differential

136 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

TriggerCoupling

class niscope.TriggerCoupling

AC

AC coupling

DC

DC coupling

HF_REJECT

Highpass filter coupling

LF_REJECT

Lowpass filter coupling

AC_PLUS_HF_REJECT

Highpass and lowpass filter coupling

TriggerModifier

class niscope.TriggerModifier

NO_TRIGGER_MOD

Normal triggering.

AUTO

Software will trigger an acquisition automatically if no trigger arrives after a certain amount of time.

AUTO_LEVEL

TriggerSlope

class niscope.TriggerSlope

NEGATIVE

Falling edge

POSITIVE

Rising edge

SLOPE_EITHER

Either edge

TriggerType

class niscope.TriggerType

EDGE

Configures the digitizer for edge triggering. An edge trigger occurs when the trigger signal crosses the
trigger level specified with the set trigger slope. You configure the trigger level and slope with niscope.
Session.configure_trigger_edge().

4.1. niscope module 137

NI-SCOPE Python API Documentation, Release 1.4.7

HYSTERESIS

Configures the digitizer for hysteresis triggering. A hysteresis trigger occurs when the trigger
signal crosses the trigger level with the specified slope and passes through the hysteresis win-
dow you specify. You configure the trigger level, slope, and hysteresis with niscope.Session.
configure_trigger_hysteresis().

DIGITAL

Configures the digitizer for digital triggering. A digital trigger occurs when the trigger signal has the spec-
ified slope. You configure the trigger slope with niscope.Session.configure_trigger_digital().

WINDOW

Configures the digitizer for window triggering. A window trigger occurs when the trigger signal enters or
leaves the window defined by the values you specify with the Low Window Level, High Window Level,
and Window Mode Parameters. You configure the low window level high window level, and window mode
with niscope.Session.configure_trigger_window().

SOFTWARE

Configures the digitizer for software triggering. A software trigger occurs when niscope.Session.
SendSoftwareTrigger() is called.

TV

Configures the digitizer for video/TV triggering. You configure the video trigger parameters like
signal Format, Line to trigger off of, Polarity, and Enable DC Restore with niscope.Session.
configure_trigger_video().

GLITCH

WIDTH

RUNT

IMMEDIATE

Configures the digitizer for immediate triggering. An immediate trigger occurs as soon as the pretrigger
samples are acquired.

TriggerWindowMode

class niscope.TriggerWindowMode

ENTERING

Trigger upon entering the window

LEAVING

Trigger upon leaving the window

ENTERING_OR_LEAVING

138 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

VerticalCoupling

class niscope.VerticalCoupling

AC

AC coupling

DC

DC coupling

GND

GND coupling

VideoPolarity

class niscope.VideoPolarity

POSITIVE

Specifies that the video signal has positive polarity.

NEGATIVE

Specifies that the video signal has negative polarity.

VideoSignalFormat

class niscope.VideoSignalFormat

NTSC

NTSC signal format supports line numbers from 1 to 525

PAL

PAL signal format supports line numbers from 1 to 625

SECAM

SECAM signal format supports line numbers from 1 to 625

M_PAL

M-PAL signal format supports line numbers from 1 to 525

VIDEO_480I_59_94_FIELDS_PER_SECOND

480 lines, interlaced, 59.94 fields per second

VIDEO_480I_60_FIELDS_PER_SECOND

480 lines, interlaced, 60 fields per second

VIDEO_480P_59_94_FRAMES_PER_SECOND

480 lines, progressive, 59.94 frames per second

VIDEO_480P_60_FRAMES_PER_SECOND

480 lines, progressive,60 frames per second

VIDEO_576I_50_FIELDS_PER_SECOND

576 lines, interlaced, 50 fields per second

4.1. niscope module 139

NI-SCOPE Python API Documentation, Release 1.4.7

VIDEO_576P_50_FRAMES_PER_SECOND

576 lines, progressive, 50 frames per second

VIDEO_720P_50_FRAMES_PER_SECOND

720 lines, progressive, 50 frames per second

VIDEO_720P_59_94_FRAMES_PER_SECOND

720 lines, progressive, 59.94 frames per second

VIDEO_720P_60_FRAMES_PER_SECOND

720 lines, progressive, 60 frames per second

VIDEO_1080I_50_FIELDS_PER_SECOND

1,080 lines, interlaced, 50 fields per second

VIDEO_1080I_59_94_FIELDS_PER_SECOND

1,080 lines, interlaced, 59.94 fields per second

VIDEO_1080I_60_FIELDS_PER_SECOND

1,080 lines, interlaced, 60 fields per second

VIDEO_1080P_24_FRAMES_PER_SECOND

1,080 lines, progressive, 24 frames per second

VideoTriggerEvent

class niscope.VideoTriggerEvent

FIELD1

Trigger on field 1 of the signal

FIELD2

Trigger on field 2 of the signal

ANY_FIELD

Trigger on the first field acquired

ANY_LINE

Trigger on the first line acquired

LINE_NUMBER

Trigger on a specific line of a video signal. Valid values vary depending on the signal format configured.

WhichTrigger

class niscope.WhichTrigger

START

ARM_REFERENCE

REFERENCE

ADVANCE

140 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

WidthCondition

class niscope.WidthCondition

WITHIN

Trigger on pulses with a duration within the range bounded by niscope.Session.
width_low_threshold and niscope.Session.width_high_threshold .

OUTSIDE

Trigger on pulses with a duration not within the range bounded by niscope.Session.
width_low_threshold and niscope.Session.width_high_threshold .

WidthPolarity

class niscope.WidthPolarity

POSITIVE

Trigger on pulses of positive polarity relative to the trigger threshold.

NEGATIVE

Trigger on pulses of negative polarity relative to the trigger threshold.

EITHER

Trigger on pulses of either positive or negative polarity.

Exceptions and Warnings

Error

exception niscope.errors.Error

Base exception type that all NI-SCOPE exceptions derive from

DriverError

exception niscope.errors.DriverError

An error originating from the NI-SCOPE driver

UnsupportedConfigurationError

exception niscope.errors.UnsupportedConfigurationError

An error due to using this module in an usupported platform.

4.1. niscope module 141

NI-SCOPE Python API Documentation, Release 1.4.7

DriverNotInstalledError

exception niscope.errors.DriverNotInstalledError

An error due to using this module without the driver runtime installed.

DriverTooOldError

exception niscope.errors.DriverTooOldError

An error due to using this module with an older version of the NI-SCOPE driver runtime.

DriverTooNewError

exception niscope.errors.DriverTooNewError

An error due to the NI-SCOPE driver runtime being too new for this module.

InvalidRepeatedCapabilityError

exception niscope.errors.InvalidRepeatedCapabilityError

An error due to an invalid character in a repeated capability

SelfTestError

exception niscope.errors.SelfTestError

An error due to a failed self-test

RpcError

exception niscope.errors.RpcError

An error specific to sessions to the NI gRPC Device Server

DriverWarning

exception niscope.errors.DriverWarning

A warning originating from the NI-SCOPE driver

Examples

You can download all niscope examples here

142 Chapter 4. Bugs / Feature Requests

https://github.com/ni/nimi-python/releases/download/1.4.7/niscope_examples.zip

NI-SCOPE Python API Documentation, Release 1.4.7

niscope_fetch.py

Listing 1: (niscope_fetch.py)

1 #!/usr/bin/python
2

3 import argparse
4 import niscope
5 import pprint
6 import sys
7

8 pp = pprint.PrettyPrinter(indent=4, width=80)
9

10

11 def example(resource_name, channels, options, length, voltage):
12 with niscope.Session(resource_name=resource_name, options=options) as session:
13 session.configure_vertical(range=voltage, coupling=niscope.VerticalCoupling.AC)
14 session.configure_horizontal_timing(min_sample_rate=50000000, min_num_pts=length,

→˓ ref_position=50.0, num_records=1, enforce_realtime=True)
15 with session.initiate():
16 waveforms = session.channels[channels].fetch(num_samples=length)
17 for i in range(len(waveforms)):
18 print('Waveform {0} information:'.format(i))
19 print(str(waveforms[i]) + '\n\n')
20

21

22 def _main(argsv):
23 parser = argparse.ArgumentParser(description='Acquires one record from the given␣

→˓channels.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
24 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource␣

→˓name of an NI digitizer.')
25 parser.add_argument('-c', '--channels', default='0', help='Channel(s) to use')
26 parser.add_argument('-l', '--length', default=1000, type=int, help='Measure record␣

→˓length')
27 parser.add_argument('-v', '--voltage', default=1.0, type=float, help='Voltage range␣

→˓(V)')
28 parser.add_argument('-op', '--option-string', default='', type=str, help='Option␣

→˓string')
29 args = parser.parse_args(argsv)
30 example(args.resource_name, args.channels, args.option_string, args.length, args.

→˓voltage)
31

32

33 def main():
34 _main(sys.argv[1:])
35

36

37 def test_example():
38 options = {'simulate': True, 'driver_setup': {'Model': '5164', 'BoardType': 'PXIe', }

→˓, }
39 example('PXI1Slot2', '0', options, 1000, 1.0)
40

41

(continues on next page)

4.1. niscope module 143

https://github.com/ni/nimi-python/blob/1.4.7/src/niscope/examples/niscope_fetch.py

NI-SCOPE Python API Documentation, Release 1.4.7

(continued from previous page)

42 def test_main():
43 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:5164; BoardType:PXIe',␣

→˓]
44 _main(cmd_line)
45

46

47 if __name__ == '__main__':
48 main()
49

niscope_fetch_forever.py

Listing 2: (niscope_fetch_forever.py)

1 #!/usr/bin/python
2

3 import argparse
4 import hightime
5 import niscope
6 import numpy as np
7 import pprint
8 import sys
9

10

11 pp = pprint.PrettyPrinter(indent=4, width=80)
12

13

14 # We use fetch_into which allows us to allocate a single buffer per channel and "fetch␣
→˓into" it a section at a time without having to

15 # reconstruct the waveform once we are done
16 def example(resource_name, options, total_acquisition_time_in_seconds, voltage, sample_

→˓rate_in_hz, samples_per_fetch):
17 total_samples = int(total_acquisition_time_in_seconds * sample_rate_in_hz)
18 # 1. Opening session
19 with niscope.Session(resource_name=resource_name, options=options) as session:
20 # We will acquire on all channels of the device
21 channel_list = [c for c in range(session.channel_count)] # Need an actual list␣

→˓and not a range
22

23 # 2. Creating numpy arrays
24 waveforms = [np.ndarray(total_samples, dtype=np.float64) for c in channel_list]
25

26 # 3. Configuring
27 session.configure_horizontal_timing(min_sample_rate=sample_rate_in_hz, min_num_

→˓pts=1, ref_position=0.0, num_records=1, enforce_realtime=True)
28 session.channels[channel_list].configure_vertical(voltage, coupling=niscope.

→˓VerticalCoupling.DC, enabled=True)
29 # Configure software trigger, but never send the trigger.
30 # This starts an infinite acquisition, until you call session.abort() or session.

→˓close()
(continues on next page)

144 Chapter 4. Bugs / Feature Requests

https://github.com/ni/nimi-python/blob/1.4.7/src/niscope/examples/niscope_fetch_forever.py

NI-SCOPE Python API Documentation, Release 1.4.7

(continued from previous page)

31 session.configure_trigger_software()
32 current_pos = 0
33 # 4. initiating
34 with session.initiate():
35 while current_pos < total_samples:
36 # We fetch each channel at a time so we don't have to de-interleave␣

→˓afterwards
37 # We do not keep the wfm_info returned from fetch_into
38 for channel, waveform in zip(channel_list, waveforms):
39 # 5. fetching - we return the slice of the waveform array that we␣

→˓want to "fetch into"
40 session.channels[channel].fetch_into(waveform[current_pos:current_

→˓pos + samples_per_fetch], relative_to=niscope.FetchRelativeTo.READ_POINTER,
41 offset=0, record_number=0, num_

→˓records=1, timeout=hightime.timedelta(seconds=5.0))
42 current_pos += samples_per_fetch
43

44

45 def _main(argsv):
46 parser = argparse.ArgumentParser(description='Fetch more samples than will fit in␣

→˓memory.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
47 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource␣

→˓name of an NI digitizer.')
48 parser.add_argument('-t', '--time', default=10, type=int, help='Time to sample (s)')
49 parser.add_argument('-v', '--voltage', default=1.0, type=float, help='Voltage range␣

→˓(V)')
50 parser.add_argument('-op', '--option-string', default='', type=str, help='Option␣

→˓string')
51 parser.add_argument('-r', '--sample-rate', default=1000.0, type=float, help='Sample␣

→˓Rate (Hz)')
52 parser.add_argument('-s', '--samples-per-fetch', default=100, type=int, help=

→˓'Samples per fetch')
53 args = parser.parse_args(argsv)
54 example(args.resource_name, args.option_string, args.time, args.voltage, args.sample_

→˓rate, args.samples_per_fetch)
55

56

57 def main():
58 _main(sys.argv[1:])
59

60

61 def test_example():
62 options = {'simulate': True, 'driver_setup': {'Model': '5164', 'BoardType': 'PXIe', }

→˓, }
63 example('PXI1Slot2', options, 10, 1.0, 1000.0, 100)
64

65

66 def test_main():
67 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:5164; BoardType:PXIe',␣

→˓]
68 _main(cmd_line)
69

(continues on next page)

4.1. niscope module 145

NI-SCOPE Python API Documentation, Release 1.4.7

(continued from previous page)

70

71 if __name__ == '__main__':
72 main()
73

niscope_fetch_into.py

Listing 3: (niscope_fetch_into.py)

1 #!/usr/bin/python
2

3 import argparse
4 import niscope
5 import numpy
6 import pprint
7 import sys
8

9 pp = pprint.PrettyPrinter(indent=4, width=80)
10

11

12 def example(resource_name, channels, options, length, voltage):
13 # fetch_into() allows you to preallocate and reuse the destination of the fetched␣

→˓waveforms, which can result in better performance at the expense of the usability of␣
→˓fetch().

14 channels = [ch.strip() for ch in channels.split(",")]
15 num_channels = len(channels)
16 num_records = 5
17 total_num_wfms = num_channels * num_records
18 # preallocate a single array for all samples in all waveforms
19 # Supported array types are: numpy.float64, numpy.int8, numpy.int16, numpy.int32
20 # int8, int16, int32 are for fetching unscaled data, which is the fastest way to␣

→˓fetch.
21 # Gain and Offset are stored in the returned WaveformInfo objects and can be applied␣

→˓to the data by the user later.
22 wfm = numpy.ndarray(length * total_num_wfms, dtype=numpy.float64)
23 with niscope.Session(resource_name=resource_name, options=options) as session:
24 session.configure_vertical(range=voltage, coupling=niscope.VerticalCoupling.AC)
25 session.configure_horizontal_timing(min_sample_rate=50000000, min_num_pts=length,

→˓ ref_position=50.0, num_records=num_records, enforce_realtime=True)
26 with session.initiate():
27 waveforms = session.channels[channels].fetch_into(waveform=wfm, num_

→˓records=num_records)
28 for i in range(len(waveforms)):
29 print(f'Waveform {i} information:')
30 print(f'{waveforms[i]}\n\n')
31 print(f'Samples: {waveforms[i].samples.tolist()}')
32

33

34 def _main(argsv):
35 parser = argparse.ArgumentParser(description='Fetches data directly into a␣

(continues on next page)

146 Chapter 4. Bugs / Feature Requests

https://github.com/ni/nimi-python/blob/1.4.7/src/niscope/examples/niscope_fetch_into.py

NI-SCOPE Python API Documentation, Release 1.4.7

(continued from previous page)

→˓preallocated numpy array.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
36 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource␣

→˓name of an NI digitizer.')
37 parser.add_argument('-c', '--channels', default='0', help='Channel(s) to use')
38 parser.add_argument('-l', '--length', default=100, type=int, help='Measure record␣

→˓length')
39 parser.add_argument('-v', '--voltage', default=1.0, type=float, help='Voltage range␣

→˓(V)')
40 parser.add_argument('-op', '--option-string', default='', type=str, help='Option␣

→˓string')
41 args = parser.parse_args(argsv)
42 example(args.resource_name, args.channels, args.option_string, args.length, args.

→˓voltage)
43

44

45 def main():
46 _main(sys.argv[1:])
47

48

49 def test_example():
50 options = {'simulate': True, 'driver_setup': {'Model': '5164', 'BoardType': 'PXIe', }

→˓, }
51 example('PXI1Slot2', '0, 1', options, 100, 1.0)
52

53

54 def test_main():
55 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:5164; BoardType:PXIe',␣

→˓]
56 _main(cmd_line)
57

58

59 if __name__ == '__main__':
60 main()
61

niscope_read.py

Listing 4: (niscope_read.py)

1 #!/usr/bin/python
2

3 import argparse
4 import niscope
5 import pprint
6 import sys
7

8 pp = pprint.PrettyPrinter(indent=4, width=80)
9

10

11 def example(resource_name, channels, options, length, voltage):
(continues on next page)

4.1. niscope module 147

https://github.com/ni/nimi-python/blob/1.4.7/src/niscope/examples/niscope_read.py

NI-SCOPE Python API Documentation, Release 1.4.7

(continued from previous page)

12 with niscope.Session(resource_name=resource_name, options=options) as session:
13 session.configure_vertical(range=voltage, coupling=niscope.VerticalCoupling.AC)
14 session.configure_horizontal_timing(min_sample_rate=50000000, min_num_pts=length,

→˓ ref_position=50.0, num_records=1, enforce_realtime=True)
15 waveforms = session.channels[channels].read(num_samples=length)
16 for i in range(len(waveforms)):
17 print('Waveform {0} information:'.format(i))
18 print(str(waveforms[i]) + '\n\n')
19

20

21 def _main(argsv):
22 parser = argparse.ArgumentParser(description='Acquires one record from the given␣

→˓channels.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
23 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource␣

→˓name of an NI digitizer.')
24 parser.add_argument('-c', '--channels', default='0', help='Channel(s) to use')
25 parser.add_argument('-l', '--length', default=1000, type=int, help='Measure record␣

→˓length')
26 parser.add_argument('-v', '--voltage', default=1.0, type=float, help='Voltage range␣

→˓(V)')
27 parser.add_argument('-op', '--option-string', default='', type=str, help='Option␣

→˓string')
28 args = parser.parse_args(argsv)
29 example(args.resource_name, args.channels, args.option_string, args.length, args.

→˓voltage)
30

31

32 def main():
33 _main(sys.argv[1:])
34

35

36 def test_example():
37 options = {'simulate': True, 'driver_setup': {'Model': '5164', 'BoardType': 'PXIe', }

→˓, }
38 example('PXI1Slot2', '0', options, 1000, 1.0)
39

40

41 def test_main():
42 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:5164; BoardType:PXIe',␣

→˓]
43 _main(cmd_line)
44

45

46 if __name__ == '__main__':
47 main()
48

148 Chapter 4. Bugs / Feature Requests

NI-SCOPE Python API Documentation, Release 1.4.7

gRPC Support

Support for using NI-SCOPE over gRPC

SessionInitializationBehavior

class niscope.SessionInitializationBehavior

AUTO

The NI gRPC Device Server will attach to an existing session with the specified name if it exists, otherwise
the server will initialize a new session.

Note: When using the Session as a context manager and the context exits, the behavior depends on what
happened when the constructor was called. If it resulted in a new session being initialized on the NI gRPC
Device Server, then it will automatically close the server session. If it instead attached to an existing session,
then it will detach from the server session and leave it open.

INITIALIZE_SERVER_SESSION

Require the NI gRPC Device Server to initialize a new session with the specified name.

Note: When using the Session as a context manager and the context exits, it will automatically close the
server session.

ATTACH_TO_SERVER_SESSION

Require the NI gRPC Device Server to attach to an existing session with the specified name.

Note: When using the Session as a context manager and the context exits, it will detach from the server
session and leave it open.

GrpcSessionOptions

class niscope.GrpcSessionOptions(self , grpc_channel, session_name,
initialization_behavior=SessionInitializationBehavior.AUTO)

Collection of options that specifies session behaviors related to gRPC.

Creates and returns an object you can pass to a Session constructor.

Parameters

• grpc_channel (grpc.Channel) – Specifies the channel to the NI gRPC Device Server.

• session_name (str) – User-specified name that identifies the driver session on the NI gRPC
Device Server.

This is different from the resource name parameter many APIs take as a separate parameter.
Specifying a name makes it easy to share sessions across multiple gRPC clients. You can
use an empty string if you want to always initialize a new session on the server. To attach to
an existing session, you must specify the session name it was initialized with.

4.1. niscope module 149

https://docs.python.org/3/library/stdtypes.html#str

NI-SCOPE Python API Documentation, Release 1.4.7

• initialization_behavior (niscope.SessionInitializationBehavior) – Speci-
fies whether it is acceptable to initialize a new session or attach to an existing one, or if
only one of the behaviors is desired.

The driver session exists on the NI gRPC Device Server.

4.2 Additional Documentation

Refer to your driver documentation for device-specific information and detailed API documentation.

Refer to the nimi-python Read the Docs project for documentation of versions 1.4.4 of the module or earlier.

150 Chapter 4. Bugs / Feature Requests

https://nimi-python.readthedocs.io/en/stable/

CHAPTER

FIVE

LICENSE

nimi-python is licensed under an MIT-style license (see LICENSE). Other incorporated projects may be licensed under
different licenses. All licenses allow for non-commercial and commercial use.

gRPC Features

For driver APIs that support it, passing a GrpcSessionOptions instance as a parameter to Session.__init__() is subject
to the NI General Purpose EULA (see NILICENSE).

151

https://github.com/ni/nimi-python/blob/master/LICENSE
https://github.com/ni/nimi-python/blob/master/NILICENSE

NI-SCOPE Python API Documentation, Release 1.4.7

152 Chapter 5. License

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

153

NI-SCOPE Python API Documentation, Release 1.4.7

154 Chapter 6. Indices and tables

PYTHON MODULE INDEX

n
niscope, 8

155

NI-SCOPE Python API Documentation, Release 1.4.7

156 Python Module Index

INDEX

A
abort() (in module niscope.Session), 10
absolute_sample_clock_offset (in module nis-

cope.Session), 36
AC (niscope.TriggerCoupling attribute), 137
AC (niscope.VerticalCoupling attribute), 139
AC_ESTIMATE (niscope.ClearableMeasurement at-

tribute), 129
AC_ESTIMATE (niscope.ScalarMeasurement attribute),

136
AC_PLUS_HF_REJECT (niscope.TriggerCoupling at-

tribute), 137
accessory_gain (in module niscope.Session), 102
accessory_offset (in module niscope.Session), 103
acq_arm_source (in module niscope.Session), 38
acquisition_start_time (in module nis-

cope.Session), 37
acquisition_status() (in module niscope.Session),

10
acquisition_type (in module niscope.Session), 37
AcquisitionStatus (class in niscope), 126
AcquisitionType (class in niscope), 127
ADD_CHANNELS (niscope.ArrayMeasurement attribute),

128
add_waveform_processing() (in module nis-

cope.Session), 11
adv_trig_src (in module niscope.Session), 39
ADVANCE (niscope.WhichTrigger attribute), 140
advance_trigger_terminal_name (in module nis-

cope.Session), 38
ALL_MEASUREMENTS (niscope.ClearableMeasurement at-

tribute), 129
allow_more_records_than_memory (in module nis-

cope.Session), 39
AMPLITUDE (niscope.ClearableMeasurement attribute),

129
AMPLITUDE (niscope.ScalarMeasurement attribute), 135
ANALOG_DETECTION_CIRCUIT (nis-

cope.RefTriggerDetectorLocation attribute),
134

ANY_FIELD (niscope.VideoTriggerEvent attribute), 140
ANY_LINE (niscope.VideoTriggerEvent attribute), 140

AREA (niscope.ClearableMeasurement attribute), 130
AREA (niscope.ScalarMeasurement attribute), 136
arm_ref_trig_src (in module niscope.Session), 40
ARM_REFERENCE (niscope.WhichTrigger attribute), 140
ARRAY_GAIN (niscope.ArrayMeasurement attribute), 128
ARRAY_INTEGRAL (niscope.ArrayMeasurement at-

tribute), 127
ARRAY_OFFSET (niscope.ArrayMeasurement attribute),

128
ArrayMeasurement (class in niscope), 127
ATTACH_TO_SERVER_SESSION (nis-

cope.SessionInitializationBehavior attribute),
149

AUTO (niscope.SessionInitializationBehavior attribute),
149

AUTO (niscope.TriggerModifier attribute), 137
AUTO_LEVEL (niscope.TriggerModifier attribute), 137
auto_setup() (in module niscope.Session), 11
AVERAGE_FREQUENCY (niscope.ClearableMeasurement

attribute), 129
AVERAGE_FREQUENCY (niscope.ScalarMeasurement at-

tribute), 136
AVERAGE_PERIOD (niscope.ClearableMeasurement at-

tribute), 129
AVERAGE_PERIOD (niscope.ScalarMeasurement at-

tribute), 136

B
backlog (in module niscope.Session), 40
BANDPASS (niscope.FilterType attribute), 132
bandpass_filter_enabled (in module nis-

cope.Session), 41
BANDSTOP (niscope.FilterType attribute), 132
BASETOP (niscope.PercentageMethod attribute), 133
BESSEL_FILTER (niscope.ArrayMeasurement attribute),

128
binary_sample_width (in module niscope.Session), 41
BLACKMAN (niscope.FIRFilterWindow attribute), 131
BLACKMAN_WINDOW (niscope.ArrayMeasurement at-

tribute), 128
BUTTERWORTH_FILTER (niscope.ArrayMeasurement at-

tribute), 128

157

NI-SCOPE Python API Documentation, Release 1.4.7

C
cable_sense_mode (in module niscope.Session), 42
cable_sense_signal_enable (in module nis-

cope.Session), 43
cable_sense_voltage (in module niscope.Session), 43
CableSenseMode (class in niscope), 128
channel_count (in module niscope.Session), 44
channel_enabled (in module niscope.Session), 44
channel_terminal_configuration (in module nis-

cope.Session), 45
channels (niscope.Session.niscope.Session attribute),

126
CHEBYSHEV_FILTER (niscope.ArrayMeasurement at-

tribute), 128
clear_waveform_measurement_stats() (in module

niscope.Session), 12
clear_waveform_processing() (in module nis-

cope.Session), 13
ClearableMeasurement (class in niscope), 129
close() (in module niscope.Session), 13
commit() (in module niscope.Session), 13
COMPLETE (niscope.AcquisitionStatus attribute), 126
configure_chan_characteristics() (in module nis-

cope.Session), 13
configure_equalization_filter_coefficients()

(in module niscope.Session), 14
configure_horizontal_timing() (in module nis-

cope.Session), 14
configure_trigger_digital() (in module nis-

cope.Session), 15
configure_trigger_edge() (in module nis-

cope.Session), 16
configure_trigger_hysteresis() (in module nis-

cope.Session), 17
configure_trigger_immediate() (in module nis-

cope.Session), 18
configure_trigger_software() (in module nis-

cope.Session), 18
configure_trigger_video() (in module nis-

cope.Session), 19
configure_trigger_window() (in module nis-

cope.Session), 20
configure_vertical() (in module niscope.Session),

21
CYCLE_AREA (niscope.ClearableMeasurement attribute),

130
CYCLE_AREA (niscope.ScalarMeasurement attribute), 136

D
data_transfer_block_size (in module nis-

cope.Session), 45
data_transfer_maximum_bandwidth (in module nis-

cope.Session), 46

data_transfer_preferred_packet_size (in module
niscope.Session), 46

DC (niscope.TriggerCoupling attribute), 137
DC (niscope.VerticalCoupling attribute), 139
DC_ESTIMATE (niscope.ClearableMeasurement at-

tribute), 129
DC_ESTIMATE (niscope.ScalarMeasurement attribute),

136
DDC (niscope.AcquisitionType attribute), 127
DDC_OUTPUT (niscope.RefTriggerDetectorLocation

attribute), 134
DERIVATIVE (niscope.ArrayMeasurement attribute), 127
device_temperature (in module niscope.Session), 46
DIFFERENTIAL (niscope.TerminalConfiguration at-

tribute), 136
DIGITAL (niscope.TriggerType attribute), 138
disable() (in module niscope.Session), 21
DISABLED (niscope.CableSenseMode attribute), 128
DIVIDE_CHANNELS (niscope.ArrayMeasurement at-

tribute), 128
DriverError, 141
DriverNotInstalledError, 142
DriverTooNewError, 142
DriverTooOldError, 142
DriverWarning, 142
DUTY_CYCLE_NEG (niscope.ClearableMeasurement at-

tribute), 130
DUTY_CYCLE_NEG (niscope.ScalarMeasurement at-

tribute), 135
DUTY_CYCLE_POS (niscope.ClearableMeasurement at-

tribute), 130
DUTY_CYCLE_POS (niscope.ScalarMeasurement at-

tribute), 135

E
EDGE (niscope.TriggerType attribute), 137
EIGHT_TAP_HANNING (nis-

cope.FlexFIRAntialiasFilterType attribute),
132

EITHER (niscope.GlitchPolarity attribute), 133
EITHER (niscope.RuntPolarity attribute), 134
EITHER (niscope.WidthPolarity attribute), 141
enable_dc_restore (in module niscope.Session), 48
enable_time_interleaved_sampling (in module nis-

cope.Session), 48
enabled_channels (in module niscope.Session), 47
end_of_acquisition_event_output_terminal (in

module niscope.Session), 49
end_of_acquisition_event_terminal_name (in

module niscope.Session), 49
end_of_record_event_output_terminal (in module

niscope.Session), 50
end_of_record_event_terminal_name (in module

niscope.Session), 50

158 Index

NI-SCOPE Python API Documentation, Release 1.4.7

end_of_record_to_advance_trigger_holdoff (in
module niscope.Session), 51

ENTERING (niscope.TriggerWindowMode attribute), 138
ENTERING_OR_LEAVING (niscope.TriggerWindowMode

attribute), 138
equalization_filter_enabled (in module nis-

cope.Session), 51
equalization_num_coefficients (in module nis-

cope.Session), 52
Error, 141
EXACT_NUM_AVERAGES (niscope.RISMethod attribute),

133
export_attribute_configuration_buffer() (in

module niscope.Session), 21
export_attribute_configuration_file() (in mod-

ule niscope.Session), 22
exported_advance_trigger_output_terminal (in

module niscope.Session), 52
exported_ref_trigger_output_terminal (in mod-

ule niscope.Session), 53
exported_start_trigger_output_terminal (in

module niscope.Session), 53

F
FALL_SLEW_RATE (niscope.ClearableMeasurement at-

tribute), 129
FALL_SLEW_RATE (niscope.ScalarMeasurement at-

tribute), 136
FALL_TIME (niscope.ClearableMeasurement attribute),

129
FALL_TIME (niscope.ScalarMeasurement attribute), 135
fetch() (in module niscope.Session), 22
fetch_array_measurement() (in module nis-

cope.Session), 24
fetch_into() (in module niscope.Session), 25
fetch_measurement_stats() (in module nis-

cope.Session), 27
FetchRelativeTo (class in niscope), 131
FFT_AMP_SPECTRUM_DB (niscope.ArrayMeasurement at-

tribute), 128
FFT_AMP_SPECTRUM_VOLTS_RMS (nis-

cope.ArrayMeasurement attribute), 127
FFT_AMPLITUDE (niscope.ClearableMeasurement

attribute), 129
FFT_AMPLITUDE (niscope.ScalarMeasurement attribute),

136
FFT_FREQUENCY (niscope.ClearableMeasurement

attribute), 129
FFT_FREQUENCY (niscope.ScalarMeasurement attribute),

136
FFT_PHASE_SPECTRUM (niscope.ArrayMeasurement at-

tribute), 127
FIELD1 (niscope.VideoTriggerEvent attribute), 140
FIELD2 (niscope.VideoTriggerEvent attribute), 140

FilterType (class in niscope), 132
FIRFilterWindow (class in niscope), 131
FLAT_TOP (niscope.FIRFilterWindow attribute), 131
FLAT_TOP_WINDOW (niscope.ArrayMeasurement at-

tribute), 127
flex_fir_antialias_filter_type (in module nis-

cope.Session), 54
FlexFIRAntialiasFilterType (class in niscope), 132
FLEXRES (niscope.AcquisitionType attribute), 127
FOURTYEIGHT_TAP_HANNING (nis-

cope.FlexFIRAntialiasFilterType attribute),
132

FOURTYEIGHT_TAP_STANDARD (nis-
cope.FlexFIRAntialiasFilterType attribute),
132

fpga_bitfile_path (in module niscope.Session), 54
FREQUENCY (niscope.ClearableMeasurement attribute),

129
FREQUENCY (niscope.ScalarMeasurement attribute), 135

G
get_channel_names() (in module niscope.Session), 28
get_equalization_filter_coefficients() (in

module niscope.Session), 29
get_ext_cal_last_date_and_time() (in module nis-

cope.Session), 29
get_ext_cal_last_temp() (in module nis-

cope.Session), 29
get_self_cal_last_date_and_time() (in module

niscope.Session), 30
get_self_cal_last_temp() (in module nis-

cope.Session), 30
GLITCH (niscope.TriggerType attribute), 138
glitch_condition (in module niscope.Session), 55
glitch_polarity (in module niscope.Session), 55
glitch_width (in module niscope.Session), 55
GlitchCondition (class in niscope), 132
GlitchPolarity (class in niscope), 133
GND (niscope.VerticalCoupling attribute), 139
GREATER (niscope.GlitchCondition attribute), 132
GrpcSessionOptions (class in niscope), 149

H
HAMMING (niscope.FIRFilterWindow attribute), 131
HAMMING_WINDOW (niscope.ArrayMeasurement at-

tribute), 128
HANNING (niscope.FIRFilterWindow attribute), 131
HANNING_WINDOW (niscope.ArrayMeasurement at-

tribute), 127
HF_REJECT (niscope.TriggerCoupling attribute), 137
high_pass_filter_frequency (in module nis-

cope.Session), 56
HIGH_REF_VOLTS (niscope.ClearableMeasurement at-

tribute), 130

Index 159

NI-SCOPE Python API Documentation, Release 1.4.7

HIGH_REF_VOLTS (niscope.ScalarMeasurement at-
tribute), 136

HIGHPASS (niscope.FilterType attribute), 132
horz_enforce_realtime (in module niscope.Session),

56
horz_min_num_pts (in module niscope.Session), 57
horz_num_records (in module niscope.Session), 57
horz_record_length (in module niscope.Session), 58
horz_record_ref_position (in module nis-

cope.Session), 58
horz_sample_rate (in module niscope.Session), 59
horz_time_per_record (in module niscope.Session),

59
HYSTERESIS (niscope.TriggerType attribute), 137

I
IMMEDIATE (niscope.TriggerType attribute), 138
import_attribute_configuration_buffer() (in

module niscope.Session), 30
import_attribute_configuration_file() (in mod-

ule niscope.Session), 31
IN_PROGRESS (niscope.AcquisitionStatus attribute), 126
INCOMPLETE (niscope.RISMethod attribute), 133
INITIALIZE_SERVER_SESSION (nis-

cope.SessionInitializationBehavior attribute),
149

initiate() (in module niscope.Session), 31
input_clock_source (in module niscope.Session), 59
input_impedance (in module niscope.Session), 60
instrument_firmware_revision (in module nis-

cope.Session), 61
instrument_manufacturer (in module nis-

cope.Session), 61
instrument_model (in module niscope.Session), 62
instruments (niscope.Session.niscope.Session at-

tribute), 126
INTEGRAL (niscope.ClearableMeasurement attribute),

130
INTEGRAL (niscope.ScalarMeasurement attribute), 136
interleaving_offset_correction_enabled (in

module niscope.Session), 62
InvalidRepeatedCapabilityError, 142
INVERSE (niscope.ArrayMeasurement attribute), 127
io_resource_descriptor (in module nis-

cope.Session), 63
is_probe_comp_on (in module niscope.Session), 63

L
LAST_ACQ_HISTOGRAM (niscope.ArrayMeasurement at-

tribute), 127
LEAVING (niscope.TriggerWindowMode attribute), 138
LESS (niscope.GlitchCondition attribute), 132
LF_REJECT (niscope.TriggerCoupling attribute), 137

LIMITED_BIN_WIDTH (niscope.RISMethod attribute),
134

LINE_NUMBER (niscope.VideoTriggerEvent attribute), 140
lock() (in module niscope.Session), 31
logical_name (in module niscope.Session), 64
LOW_REF_VOLTS (niscope.ClearableMeasurement

attribute), 130
LOW_REF_VOLTS (niscope.ScalarMeasurement attribute),

136
LOWHIGH (niscope.PercentageMethod attribute), 133
LOWPASS (niscope.FilterType attribute), 132

M
M_PAL (niscope.VideoSignalFormat attribute), 139
master_enable (in module niscope.Session), 64
max_input_frequency (in module niscope.Session), 65
max_real_time_sampling_rate (in module nis-

cope.Session), 65
max_ris_rate (in module niscope.Session), 66
meas_array_gain (in module niscope.Session), 66
meas_array_offset (in module niscope.Session), 67
meas_chan_high_ref_level (in module nis-

cope.Session), 67
meas_chan_low_ref_level (in module nis-

cope.Session), 68
meas_chan_mid_ref_level (in module nis-

cope.Session), 69
meas_filter_center_freq (in module nis-

cope.Session), 69
meas_filter_cutoff_freq (in module nis-

cope.Session), 70
meas_filter_order (in module niscope.Session), 71
meas_filter_ripple (in module niscope.Session), 71
meas_filter_taps (in module niscope.Session), 72
meas_filter_transient_waveform_percent (in

module niscope.Session), 72
meas_filter_type (in module niscope.Session), 73
meas_filter_width (in module niscope.Session), 74
meas_fir_filter_window (in module nis-

cope.Session), 74
meas_high_ref (in module niscope.Session), 75
meas_hysteresis_percent (in module nis-

cope.Session), 75
meas_interpolation_sampling_factor (in module

niscope.Session), 76
meas_last_acq_histogram_size (in module nis-

cope.Session), 76
meas_low_ref (in module niscope.Session), 77
meas_mid_ref (in module niscope.Session), 77
meas_other_channel (in module niscope.Session), 78
meas_percentage_method (in module nis-

cope.Session), 78
meas_polynomial_interpolation_order (in module

niscope.Session), 79

160 Index

NI-SCOPE Python API Documentation, Release 1.4.7

meas_ref_level_units (in module niscope.Session),
80

meas_time_histogram_high_time (in module nis-
cope.Session), 80

meas_time_histogram_high_volts (in module nis-
cope.Session), 81

meas_time_histogram_low_time (in module nis-
cope.Session), 82

meas_time_histogram_low_volts (in module nis-
cope.Session), 82

meas_time_histogram_size (in module nis-
cope.Session), 83

meas_voltage_histogram_high_volts (in module
niscope.Session), 83

meas_voltage_histogram_low_volts (in module nis-
cope.Session), 84

meas_voltage_histogram_size (in module nis-
cope.Session), 85

MID_REF_VOLTS (niscope.ClearableMeasurement
attribute), 130

MID_REF_VOLTS (niscope.ScalarMeasurement attribute),
136

MIN_NUM_AVERAGES (niscope.RISMethod attribute), 133
min_sample_rate (in module niscope.Session), 85
MINMAX (niscope.PercentageMethod attribute), 133
module

niscope, 8
MULTI_ACQ_AVERAGE (niscope.ArrayMeasurement

attribute), 128
MULTI_ACQ_AVERAGE (niscope.ClearableMeasurement

attribute), 129
MULTI_ACQ_TIME_HISTOGRAM (nis-

cope.ArrayMeasurement attribute), 127
MULTI_ACQ_TIME_HISTOGRAM (nis-

cope.ClearableMeasurement attribute), 129
MULTI_ACQ_VOLTAGE_HISTOGRAM (nis-

cope.ArrayMeasurement attribute), 127
MULTI_ACQ_VOLTAGE_HISTOGRAM (nis-

cope.ClearableMeasurement attribute), 129
MULTIPLY_CHANNELS (niscope.ArrayMeasurement

attribute), 127

N
NEGATIVE (niscope.GlitchPolarity attribute), 133
NEGATIVE (niscope.RuntPolarity attribute), 134
NEGATIVE (niscope.TriggerSlope attribute), 137
NEGATIVE (niscope.VideoPolarity attribute), 139
NEGATIVE (niscope.WidthPolarity attribute), 141
niscope

module, 8
NO_MEASUREMENT (niscope.ArrayMeasurement at-

tribute), 127
NO_MEASUREMENT (niscope.ScalarMeasurement at-

tribute), 135

NO_TRIGGER_MOD (niscope.TriggerModifier attribute),
137

NONE (niscope.FIRFilterWindow attribute), 131
NONE (niscope.RuntTimeCondition attribute), 135
NORMAL (niscope.AcquisitionType attribute), 127
NOW (niscope.FetchRelativeTo attribute), 131
NTSC (niscope.VideoSignalFormat attribute), 139

O
ON_DEMAND (niscope.CableSenseMode attribute), 128
onboard_memory_size (in module niscope.Session), 86
Option (class in niscope), 133
output_clock_source (in module niscope.Session), 86
OUTSIDE (niscope.RuntTimeCondition attribute), 135
OUTSIDE (niscope.WidthCondition attribute), 141
OVERSHOOT (niscope.ClearableMeasurement attribute),

129
OVERSHOOT (niscope.ScalarMeasurement attribute), 136

P
PAL (niscope.VideoSignalFormat attribute), 139
PERCENTAGE (niscope.RefLevelUnits attribute), 134
PercentageMethod (class in niscope), 133
PERIOD (niscope.ClearableMeasurement attribute), 129
PERIOD (niscope.ScalarMeasurement attribute), 135
PHASE_DELAY (niscope.ClearableMeasurement at-

tribute), 130
PHASE_DELAY (niscope.ScalarMeasurement attribute),

136
pll_lock_status (in module niscope.Session), 87
points_done (in module niscope.Session), 87
poll_interval (in module niscope.Session), 88
POLYNOMIAL_INTERPOLATION (nis-

cope.ArrayMeasurement attribute), 127
POSITIVE (niscope.GlitchPolarity attribute), 133
POSITIVE (niscope.RuntPolarity attribute), 134
POSITIVE (niscope.TriggerSlope attribute), 137
POSITIVE (niscope.VideoPolarity attribute), 139
POSITIVE (niscope.WidthPolarity attribute), 141
PRESHOOT (niscope.ClearableMeasurement attribute),

129
PRESHOOT (niscope.ScalarMeasurement attribute), 136
PRETRIGGER (niscope.FetchRelativeTo attribute), 131
probe_attenuation (in module niscope.Session), 88
probe_compensation_signal_start() (in module

niscope.Session), 32
probe_compensation_signal_stop() (in module nis-

cope.Session), 32

R
read() (in module niscope.Session), 32
READ_POINTER (niscope.FetchRelativeTo attribute), 131
ready_for_advance_event_output_terminal (in

module niscope.Session), 89

Index 161

NI-SCOPE Python API Documentation, Release 1.4.7

ready_for_advance_event_terminal_name (in mod-
ule niscope.Session), 89

ready_for_ref_event_output_terminal (in module
niscope.Session), 90

ready_for_ref_event_terminal_name (in module
niscope.Session), 90

ready_for_start_event_output_terminal (in mod-
ule niscope.Session), 91

ready_for_start_event_terminal_name (in module
niscope.Session), 91

record_arm_source (in module niscope.Session), 92
records_done (in module niscope.Session), 92
ref_clk_rate (in module niscope.Session), 92
ref_trig_tdc_enable (in module niscope.Session), 94
ref_trigger_detector_location (in module nis-

cope.Session), 93
ref_trigger_minimum_quiet_time (in module nis-

cope.Session), 93
ref_trigger_terminal_name (in module nis-

cope.Session), 94
REFERENCE (niscope.WhichTrigger attribute), 140
RefLevelUnits (class in niscope), 134
RefTriggerDetectorLocation (class in niscope), 134
reset() (in module niscope.Session), 34
reset_device() (in module niscope.Session), 34
reset_with_defaults() (in module niscope.Session),

34
resolution (in module niscope.Session), 95
RESTORE_EXTERNAL_CALIBRATION (niscope.Option at-

tribute), 133
ris_in_auto_setup_enable (in module nis-

cope.Session), 95
ris_method (in module niscope.Session), 96
ris_num_averages (in module niscope.Session), 96
RISE_SLEW_RATE (niscope.ClearableMeasurement at-

tribute), 129
RISE_SLEW_RATE (niscope.ScalarMeasurement at-

tribute), 136
RISE_TIME (niscope.ClearableMeasurement attribute),

129
RISE_TIME (niscope.ScalarMeasurement attribute), 135
RISMethod (class in niscope), 133
RpcError, 142
RUNT (niscope.TriggerType attribute), 138
runt_high_threshold (in module niscope.Session), 97
runt_low_threshold (in module niscope.Session), 97
runt_polarity (in module niscope.Session), 98
runt_time_condition (in module niscope.Session), 98
runt_time_high_limit (in module niscope.Session),

99
runt_time_low_limit (in module niscope.Session), 99
RuntPolarity (class in niscope), 134
RuntTimeCondition (class in niscope), 135

S
samp_clk_timebase_div (in module niscope.Session),

100
samp_clk_timebase_rate (in module nis-

cope.Session), 101
samp_clk_timebase_src (in module niscope.Session),

101
sample_clock_timebase_multiplier (in module nis-

cope.Session), 100
sample_mode (in module niscope.Session), 100
ScalarMeasurement (class in niscope), 135
SECAM (niscope.VideoSignalFormat attribute), 139
self_cal() (in module niscope.Session), 34
SELF_CALIBRATE_ALL_CHANNELS (niscope.Option at-

tribute), 133
self_test() (in module niscope.Session), 35
SelfTestError, 142
send_software_trigger_edge() (in module nis-

cope.Session), 35
serial_number (in module niscope.Session), 102
Session (class in niscope), 8
SessionInitializationBehavior (class in niscope),

149
simulate (in module niscope.Session), 104
SINGLE_ENDED (niscope.TerminalConfiguration at-

tribute), 136
SIXTEEN_TAP_HANNING (nis-

cope.FlexFIRAntialiasFilterType attribute),
132

SLOPE_EITHER (niscope.TriggerSlope attribute), 137
SOFTWARE (niscope.TriggerType attribute), 138
specific_driver_description (in module nis-

cope.Session), 104
specific_driver_revision (in module nis-

cope.Session), 105
specific_driver_vendor (in module nis-

cope.Session), 105
START (niscope.FetchRelativeTo attribute), 131
START (niscope.WhichTrigger attribute), 140
start_to_ref_trigger_holdoff (in module nis-

cope.Session), 105
start_trigger_terminal_name (in module nis-

cope.Session), 106
STATUS_UNKNOWN (niscope.AcquisitionStatus attribute),

126
SUBTRACT_CHANNELS (niscope.ArrayMeasurement

attribute), 128
supported_instrument_models (in module nis-

cope.Session), 106

T
tclk (in module niscope.Session), 119
TerminalConfiguration (class in niscope), 136

162 Index

NI-SCOPE Python API Documentation, Release 1.4.7

TIME_DELAY (niscope.ClearableMeasurement attribute),
130

TIME_DELAY (niscope.ScalarMeasurement attribute), 136
TIME_HISTOGRAM_HITS (nis-

cope.ClearableMeasurement attribute), 131
TIME_HISTOGRAM_MAX (niscope.ClearableMeasurement

attribute), 130
TIME_HISTOGRAM_MEAN (nis-

cope.ClearableMeasurement attribute), 130
TIME_HISTOGRAM_MEAN_PLUS_2_STDEV (nis-

cope.ClearableMeasurement attribute), 131
TIME_HISTOGRAM_MEAN_PLUS_3_STDEV (nis-

cope.ClearableMeasurement attribute), 131
TIME_HISTOGRAM_MEAN_PLUS_STDEV (nis-

cope.ClearableMeasurement attribute), 131
TIME_HISTOGRAM_MEDIAN (nis-

cope.ClearableMeasurement attribute), 130
TIME_HISTOGRAM_MIN (niscope.ClearableMeasurement

attribute), 131
TIME_HISTOGRAM_MODE (nis-

cope.ClearableMeasurement attribute), 130
TIME_HISTOGRAM_NEW_HITS (nis-

cope.ClearableMeasurement attribute), 131
TIME_HISTOGRAM_PEAK_TO_PEAK (nis-

cope.ClearableMeasurement attribute), 131
TIME_HISTOGRAM_STDEV (nis-

cope.ClearableMeasurement attribute), 130
TRIANGLE (niscope.FIRFilterWindow attribute), 131
TRIANGLE_WINDOW (niscope.ArrayMeasurement at-

tribute), 128
TRIGGER (niscope.FetchRelativeTo attribute), 132
trigger_auto_triggered (in module nis-

cope.Session), 107
trigger_coupling (in module niscope.Session), 107
trigger_delay_time (in module niscope.Session), 108
trigger_holdoff (in module niscope.Session), 108
trigger_hysteresis (in module niscope.Session), 109
trigger_impedance (in module niscope.Session), 109
trigger_level (in module niscope.Session), 110
trigger_modifier (in module niscope.Session), 110
trigger_slope (in module niscope.Session), 111
trigger_source (in module niscope.Session), 111
trigger_type (in module niscope.Session), 111
trigger_window_high_level (in module nis-

cope.Session), 112
trigger_window_low_level (in module nis-

cope.Session), 113
trigger_window_mode (in module niscope.Session),

113
TriggerCoupling (class in niscope), 137
TriggerModifier (class in niscope), 137
TriggerSlope (class in niscope), 137
TriggerType (class in niscope), 137
TriggerWindowMode (class in niscope), 138

TV (niscope.TriggerType attribute), 138
tv_trigger_event (in module niscope.Session), 114
tv_trigger_line_number (in module nis-

cope.Session), 114
tv_trigger_polarity (in module niscope.Session),

115
tv_trigger_signal_format (in module nis-

cope.Session), 115

U
UNBALANCED_DIFFERENTIAL (nis-

cope.TerminalConfiguration attribute), 136
unlock() (in module niscope.Session), 36
UnsupportedConfigurationError, 141
use_spec_initial_x (in module niscope.Session), 115

V
vertical_coupling (in module niscope.Session), 116
vertical_offset (in module niscope.Session), 116
vertical_range (in module niscope.Session), 117
VerticalCoupling (class in niscope), 139
VIDEO_1080I_50_FIELDS_PER_SECOND (nis-

cope.VideoSignalFormat attribute), 140
VIDEO_1080I_59_94_FIELDS_PER_SECOND (nis-

cope.VideoSignalFormat attribute), 140
VIDEO_1080I_60_FIELDS_PER_SECOND (nis-

cope.VideoSignalFormat attribute), 140
VIDEO_1080P_24_FRAMES_PER_SECOND (nis-

cope.VideoSignalFormat attribute), 140
VIDEO_480I_59_94_FIELDS_PER_SECOND (nis-

cope.VideoSignalFormat attribute), 139
VIDEO_480I_60_FIELDS_PER_SECOND (nis-

cope.VideoSignalFormat attribute), 139
VIDEO_480P_59_94_FRAMES_PER_SECOND (nis-

cope.VideoSignalFormat attribute), 139
VIDEO_480P_60_FRAMES_PER_SECOND (nis-

cope.VideoSignalFormat attribute), 139
VIDEO_576I_50_FIELDS_PER_SECOND (nis-

cope.VideoSignalFormat attribute), 139
VIDEO_576P_50_FRAMES_PER_SECOND (nis-

cope.VideoSignalFormat attribute), 139
VIDEO_720P_50_FRAMES_PER_SECOND (nis-

cope.VideoSignalFormat attribute), 140
VIDEO_720P_59_94_FRAMES_PER_SECOND (nis-

cope.VideoSignalFormat attribute), 140
VIDEO_720P_60_FRAMES_PER_SECOND (nis-

cope.VideoSignalFormat attribute), 140
VideoPolarity (class in niscope), 139
VideoSignalFormat (class in niscope), 139
VideoTriggerEvent (class in niscope), 140
VOLTAGE_AVERAGE (niscope.ClearableMeasurement at-

tribute), 129
VOLTAGE_AVERAGE (niscope.ScalarMeasurement at-

tribute), 135

Index 163

NI-SCOPE Python API Documentation, Release 1.4.7

VOLTAGE_BASE (niscope.ClearableMeasurement at-
tribute), 130

VOLTAGE_BASE (niscope.ScalarMeasurement attribute),
136

VOLTAGE_BASE_TO_TOP (nis-
cope.ClearableMeasurement attribute), 130

VOLTAGE_BASE_TO_TOP (niscope.ScalarMeasurement
attribute), 136

VOLTAGE_CYCLE_AVERAGE (nis-
cope.ClearableMeasurement attribute), 129

VOLTAGE_CYCLE_AVERAGE (niscope.ScalarMeasurement
attribute), 135

VOLTAGE_CYCLE_RMS (niscope.ClearableMeasurement
attribute), 129

VOLTAGE_CYCLE_RMS (niscope.ScalarMeasurement at-
tribute), 135

VOLTAGE_HIGH (niscope.ClearableMeasurement at-
tribute), 129

VOLTAGE_HIGH (niscope.ScalarMeasurement attribute),
135

VOLTAGE_HISTOGRAM_HITS (nis-
cope.ClearableMeasurement attribute), 130

VOLTAGE_HISTOGRAM_MAX (nis-
cope.ClearableMeasurement attribute), 130

VOLTAGE_HISTOGRAM_MEAN (nis-
cope.ClearableMeasurement attribute), 130

VOLTAGE_HISTOGRAM_MEAN_PLUS_2_STDEV (nis-
cope.ClearableMeasurement attribute), 130

VOLTAGE_HISTOGRAM_MEAN_PLUS_3_STDEV (nis-
cope.ClearableMeasurement attribute), 130

VOLTAGE_HISTOGRAM_MEAN_PLUS_STDEV (nis-
cope.ClearableMeasurement attribute), 130

VOLTAGE_HISTOGRAM_MEDIAN (nis-
cope.ClearableMeasurement attribute), 130

VOLTAGE_HISTOGRAM_MIN (nis-
cope.ClearableMeasurement attribute), 130

VOLTAGE_HISTOGRAM_MODE (nis-
cope.ClearableMeasurement attribute), 130

VOLTAGE_HISTOGRAM_NEW_HITS (nis-
cope.ClearableMeasurement attribute), 130

VOLTAGE_HISTOGRAM_PEAK_TO_PEAK (nis-
cope.ClearableMeasurement attribute), 130

VOLTAGE_HISTOGRAM_STDEV (nis-
cope.ClearableMeasurement attribute), 130

VOLTAGE_LOW (niscope.ClearableMeasurement at-
tribute), 129

VOLTAGE_LOW (niscope.ScalarMeasurement attribute),
135

VOLTAGE_MAX (niscope.ClearableMeasurement at-
tribute), 129

VOLTAGE_MAX (niscope.ScalarMeasurement attribute),
135

VOLTAGE_MIN (niscope.ClearableMeasurement at-
tribute), 129

VOLTAGE_MIN (niscope.ScalarMeasurement attribute),
135

VOLTAGE_PEAK_TO_PEAK (nis-
cope.ClearableMeasurement attribute), 129

VOLTAGE_PEAK_TO_PEAK (niscope.ScalarMeasurement
attribute), 135

VOLTAGE_RMS (niscope.ClearableMeasurement at-
tribute), 129

VOLTAGE_RMS (niscope.ScalarMeasurement attribute),
135

VOLTAGE_TOP (niscope.ClearableMeasurement at-
tribute), 129

VOLTAGE_TOP (niscope.ScalarMeasurement attribute),
136

VOLTS (niscope.RefLevelUnits attribute), 134

W
WhichTrigger (class in niscope), 140
WIDTH (niscope.TriggerType attribute), 138
width_condition (in module niscope.Session), 118
width_high_threshold (in module niscope.Session),

118
width_low_threshold (in module niscope.Session),

119
WIDTH_NEG (niscope.ClearableMeasurement attribute),

130
WIDTH_NEG (niscope.ScalarMeasurement attribute), 135
width_polarity (in module niscope.Session), 119
WIDTH_POS (niscope.ClearableMeasurement attribute),

130
WIDTH_POS (niscope.ScalarMeasurement attribute), 135
WidthCondition (class in niscope), 141
WidthPolarity (class in niscope), 141
WINDOW (niscope.TriggerType attribute), 138
WINDOWED_FIR_FILTER (niscope.ArrayMeasurement at-

tribute), 128
WITHIN (niscope.RuntTimeCondition attribute), 135
WITHIN (niscope.WidthCondition attribute), 141

164 Index

	About
	Support Policy

	Contributing
	Support / Feedback
	Bugs / Feature Requests
	niscope module
	Installation
	Usage
	API Reference
	Session
	Methods
	abort
	acquisition_status
	add_waveform_processing
	auto_setup
	clear_waveform_measurement_stats
	clear_waveform_processing
	close
	commit
	configure_chan_characteristics
	configure_equalization_filter_coefficients
	configure_horizontal_timing
	configure_trigger_digital
	configure_trigger_edge
	configure_trigger_hysteresis
	configure_trigger_immediate
	configure_trigger_software
	configure_trigger_video
	configure_trigger_window
	configure_vertical
	disable
	export_attribute_configuration_buffer
	export_attribute_configuration_file
	fetch
	fetch_array_measurement
	fetch_into
	fetch_measurement_stats
	get_channel_names
	get_equalization_filter_coefficients
	get_ext_cal_last_date_and_time
	get_ext_cal_last_temp
	get_self_cal_last_date_and_time
	get_self_cal_last_temp
	import_attribute_configuration_buffer
	import_attribute_configuration_file
	initiate
	lock
	probe_compensation_signal_start
	probe_compensation_signal_stop
	read
	reset
	reset_device
	reset_with_defaults
	self_cal
	self_test
	send_software_trigger_edge
	unlock

	Properties
	absolute_sample_clock_offset
	acquisition_start_time
	acquisition_type
	acq_arm_source
	advance_trigger_terminal_name
	adv_trig_src
	allow_more_records_than_memory
	arm_ref_trig_src
	backlog
	bandpass_filter_enabled
	binary_sample_width
	cable_sense_mode
	cable_sense_signal_enable
	cable_sense_voltage
	channel_count
	channel_enabled
	channel_terminal_configuration
	data_transfer_block_size
	data_transfer_maximum_bandwidth
	data_transfer_preferred_packet_size
	device_temperature
	enabled_channels
	enable_dc_restore
	enable_time_interleaved_sampling
	end_of_acquisition_event_output_terminal
	end_of_acquisition_event_terminal_name
	end_of_record_event_output_terminal
	end_of_record_event_terminal_name
	end_of_record_to_advance_trigger_holdoff
	equalization_filter_enabled
	equalization_num_coefficients
	exported_advance_trigger_output_terminal
	exported_ref_trigger_output_terminal
	exported_start_trigger_output_terminal
	flex_fir_antialias_filter_type
	fpga_bitfile_path
	glitch_condition
	glitch_polarity
	glitch_width
	high_pass_filter_frequency
	horz_enforce_realtime
	horz_min_num_pts
	horz_num_records
	horz_record_length
	horz_record_ref_position
	horz_sample_rate
	horz_time_per_record
	input_clock_source
	input_impedance
	instrument_firmware_revision
	instrument_manufacturer
	instrument_model
	interleaving_offset_correction_enabled
	io_resource_descriptor
	is_probe_comp_on
	logical_name
	master_enable
	max_input_frequency
	max_real_time_sampling_rate
	max_ris_rate
	meas_array_gain
	meas_array_offset
	meas_chan_high_ref_level
	meas_chan_low_ref_level
	meas_chan_mid_ref_level
	meas_filter_center_freq
	meas_filter_cutoff_freq
	meas_filter_order
	meas_filter_ripple
	meas_filter_taps
	meas_filter_transient_waveform_percent
	meas_filter_type
	meas_filter_width
	meas_fir_filter_window
	meas_high_ref
	meas_hysteresis_percent
	meas_interpolation_sampling_factor
	meas_last_acq_histogram_size
	meas_low_ref
	meas_mid_ref
	meas_other_channel
	meas_percentage_method
	meas_polynomial_interpolation_order
	meas_ref_level_units
	meas_time_histogram_high_time
	meas_time_histogram_high_volts
	meas_time_histogram_low_time
	meas_time_histogram_low_volts
	meas_time_histogram_size
	meas_voltage_histogram_high_volts
	meas_voltage_histogram_low_volts
	meas_voltage_histogram_size
	min_sample_rate
	onboard_memory_size
	output_clock_source
	pll_lock_status
	points_done
	poll_interval
	probe_attenuation
	ready_for_advance_event_output_terminal
	ready_for_advance_event_terminal_name
	ready_for_ref_event_output_terminal
	ready_for_ref_event_terminal_name
	ready_for_start_event_output_terminal
	ready_for_start_event_terminal_name
	records_done
	record_arm_source
	ref_clk_rate
	ref_trigger_detector_location
	ref_trigger_minimum_quiet_time
	ref_trigger_terminal_name
	ref_trig_tdc_enable
	resolution
	ris_in_auto_setup_enable
	ris_method
	ris_num_averages
	runt_high_threshold
	runt_low_threshold
	runt_polarity
	runt_time_condition
	runt_time_high_limit
	runt_time_low_limit
	sample_mode
	samp_clk_timebase_div
	sample_clock_timebase_multiplier
	samp_clk_timebase_rate
	samp_clk_timebase_src
	serial_number
	accessory_gain
	accessory_offset
	simulate
	specific_driver_description
	specific_driver_revision
	specific_driver_vendor
	start_to_ref_trigger_holdoff
	start_trigger_terminal_name
	supported_instrument_models
	trigger_auto_triggered
	trigger_coupling
	trigger_delay_time
	trigger_holdoff
	trigger_hysteresis
	trigger_impedance
	trigger_level
	trigger_modifier
	trigger_slope
	trigger_source
	trigger_type
	trigger_window_high_level
	trigger_window_low_level
	trigger_window_mode
	tv_trigger_event
	tv_trigger_line_number
	tv_trigger_polarity
	tv_trigger_signal_format
	use_spec_initial_x
	vertical_coupling
	vertical_offset
	vertical_range
	width_condition
	width_high_threshold
	width_low_threshold
	width_polarity

	NI-TClk Support
	Repeated Capabilities
	channels
	instruments

	Enums
	AcquisitionStatus
	AcquisitionType
	ArrayMeasurement
	CableSenseMode
	ClearableMeasurement
	FIRFilterWindow
	FetchRelativeTo
	FilterType
	FlexFIRAntialiasFilterType
	GlitchCondition
	GlitchPolarity
	Option
	PercentageMethod
	RISMethod
	RefLevelUnits
	RefTriggerDetectorLocation
	RuntPolarity
	RuntTimeCondition
	ScalarMeasurement
	TerminalConfiguration
	TriggerCoupling
	TriggerModifier
	TriggerSlope
	TriggerType
	TriggerWindowMode
	VerticalCoupling
	VideoPolarity
	VideoSignalFormat
	VideoTriggerEvent
	WhichTrigger
	WidthCondition
	WidthPolarity

	Exceptions and Warnings
	Error
	DriverError
	UnsupportedConfigurationError
	DriverNotInstalledError
	DriverTooOldError
	DriverTooNewError
	InvalidRepeatedCapabilityError
	SelfTestError
	RpcError
	DriverWarning

	Examples
	niscope_fetch.py
	niscope_fetch_forever.py
	niscope_fetch_into.py
	niscope_read.py

	gRPC Support
	SessionInitializationBehavior
	GrpcSessionOptions

	Additional Documentation

	License
	Indices and tables
	Python Module Index
	Index

