

NI-SCOPE Python API Documentation

About

The niscope module provides a Python API for NI-SCOPE. The code is maintained in the Open Source repository for nimi-python [https://github.com/ni/nimi-python].

Support Policy

niscope supports all the Operating Systems supported by NI-SCOPE.

It follows Python Software Foundation [https://devguide.python.org/#status-of-python-branches] support policy for different versions of CPython.

Contributing

We welcome contributions! You can clone the project repository, build it, and install it by following these instructions [https://github.com/ni/nimi-python/blob/master/CONTRIBUTING.md].

Support / Feedback

For support specific to the Python API, follow the processs in Bugs / Feature Requests.
For support with hardware, the driver runtime or any other questions not specific to the Python API, please visit NI Community Forums [https://forums.ni.com/].

Bugs / Feature Requests

To report a bug or submit a feature request specific to Python API, please use the
GitHub issues page [https://github.com/ni/nimi-python/issues].

Fill in the issue template as completely as possible and we will respond as soon
as we can.

Documentation

	niscope module
	Installation

	Usage

	API Reference
	Session

	Methods

	Properties

	NI-TClk Support

	Repeated Capabilities

	Enums

	Exceptions and Warnings

	Examples

	gRPC Support

Additional Documentation

Refer to your driver documentation for device-specific information and detailed API documentation.

Refer to the nimi-python Read the Docs project [https://nimi-python.readthedocs.io/en/stable/] for documentation of versions 1.4.4 of the module or earlier.

License

nimi-python is licensed under an MIT-style license (see
LICENSE [https://github.com/ni/nimi-python/blob/master/LICENSE]).
Other incorporated projects may be licensed under different licenses. All
licenses allow for non-commercial and commercial use.

gRPC Features

For driver APIs that support it, passing a GrpcSessionOptions instance as a parameter to Session.__init__() is
subject to the NI General Purpose EULA (see NILICENSE [https://github.com/ni/nimi-python/blob/master/NILICENSE]).

Indices and tables

	Index

	Module Index

	Search Page

niscope module

Installation

As a prerequisite to using the niscope module, you must install the NI-SCOPE runtime on your system. Visit ni.com/downloads [http://www.ni.com/downloads/] to download the driver runtime for your devices.

The nimi-python modules (i.e. for NI-SCOPE) can be installed with pip [http://pypi.python.org/pypi/pip]:

$ python -m pip install niscope~=1.4.8

Usage

The following is a basic example of using the niscope module to open a session to a High Speed Digitizer and capture a single record of 1000 points.

import niscope
with niscope.Session("Dev1") as session:
 session.channels[0].configure_vertical(range=1.0, coupling=niscope.VerticalCoupling.AC)
 session.channels[1].configure_vertical(range=10.0, coupling=niscope.VerticalCoupling.DC)
 session.configure_horizontal_timing(min_sample_rate=50000000, min_num_pts=1000, ref_position=50.0, num_records=5, enforce_realtime=True)
 with session.initiate():
 waveforms = session.channels[0,1].fetch(num_records=5)
 for wfm in waveforms:
 print('Channel {}, record {} samples acquired: {:,}\n'.format(wfm.channel, wfm.record, len(wfm.samples)))

 # Find all channel 1 records (Note channel name is always a string even if integers used in channel[])
 chan1 = [wfm for wfm in waveforms if wfm.channel == '0']

 # Find all record number 3
 rec3 = [wfm for wfm in waveforms if wfm.record == 3]

If you need faster fetch performance, or to directly interface with SciPy [https://www.scipy.org/], you can use the fetch_into() method instead of fetch(). See the fetch_into example.

Other usage examples can be found on GitHub. [https://github.com/ni/nimi-python/tree/master/src/niscope/examples]

API Reference

	Session
	Session

	Methods
	abort
	abort()

	acquisition_status
	acquisition_status()

	add_waveform_processing
	add_waveform_processing()

	auto_setup
	auto_setup()

	clear_waveform_measurement_stats
	clear_waveform_measurement_stats()

	clear_waveform_processing
	clear_waveform_processing()

	close
	close()

	commit
	commit()

	configure_chan_characteristics
	configure_chan_characteristics()

	configure_equalization_filter_coefficients
	configure_equalization_filter_coefficients()

	configure_horizontal_timing
	configure_horizontal_timing()

	configure_trigger_digital
	configure_trigger_digital()

	configure_trigger_edge
	configure_trigger_edge()

	configure_trigger_hysteresis
	configure_trigger_hysteresis()

	configure_trigger_immediate
	configure_trigger_immediate()

	configure_trigger_software
	configure_trigger_software()

	configure_trigger_video
	configure_trigger_video()

	configure_trigger_window
	configure_trigger_window()

	configure_vertical
	configure_vertical()

	disable
	disable()

	export_attribute_configuration_buffer
	export_attribute_configuration_buffer()

	export_attribute_configuration_file
	export_attribute_configuration_file()

	fetch
	fetch()

	fetch_array_measurement
	fetch_array_measurement()

	fetch_into
	fetch_into()

	fetch_measurement_stats
	fetch_measurement_stats()

	get_channel_names
	get_channel_names()

	get_equalization_filter_coefficients
	get_equalization_filter_coefficients()

	get_ext_cal_last_date_and_time
	get_ext_cal_last_date_and_time()

	get_ext_cal_last_temp
	get_ext_cal_last_temp()

	get_self_cal_last_date_and_time
	get_self_cal_last_date_and_time()

	get_self_cal_last_temp
	get_self_cal_last_temp()

	import_attribute_configuration_buffer
	import_attribute_configuration_buffer()

	import_attribute_configuration_file
	import_attribute_configuration_file()

	initiate
	initiate()

	lock
	lock()

	probe_compensation_signal_start
	probe_compensation_signal_start()

	probe_compensation_signal_stop
	probe_compensation_signal_stop()

	read
	read()

	reset
	reset()

	reset_device
	reset_device()

	reset_with_defaults
	reset_with_defaults()

	self_cal
	self_cal()

	self_test
	self_test()

	send_software_trigger_edge
	send_software_trigger_edge()

	unlock
	unlock()

	Properties
	absolute_sample_clock_offset
	absolute_sample_clock_offset

	acquisition_start_time
	acquisition_start_time

	acquisition_type
	acquisition_type

	acq_arm_source
	acq_arm_source

	advance_trigger_terminal_name
	advance_trigger_terminal_name

	adv_trig_src
	adv_trig_src

	allow_more_records_than_memory
	allow_more_records_than_memory

	arm_ref_trig_src
	arm_ref_trig_src

	backlog
	backlog

	bandpass_filter_enabled
	bandpass_filter_enabled

	binary_sample_width
	binary_sample_width

	cable_sense_mode
	cable_sense_mode

	cable_sense_signal_enable
	cable_sense_signal_enable

	cable_sense_voltage
	cable_sense_voltage

	channel_count
	channel_count

	channel_enabled
	channel_enabled

	channel_terminal_configuration
	channel_terminal_configuration

	data_transfer_block_size
	data_transfer_block_size

	data_transfer_maximum_bandwidth
	data_transfer_maximum_bandwidth

	data_transfer_preferred_packet_size
	data_transfer_preferred_packet_size

	device_temperature
	device_temperature

	enabled_channels
	enabled_channels

	enable_dc_restore
	enable_dc_restore

	enable_time_interleaved_sampling
	enable_time_interleaved_sampling

	end_of_acquisition_event_output_terminal
	end_of_acquisition_event_output_terminal

	end_of_acquisition_event_terminal_name
	end_of_acquisition_event_terminal_name

	end_of_record_event_output_terminal
	end_of_record_event_output_terminal

	end_of_record_event_terminal_name
	end_of_record_event_terminal_name

	end_of_record_to_advance_trigger_holdoff
	end_of_record_to_advance_trigger_holdoff

	equalization_filter_enabled
	equalization_filter_enabled

	equalization_num_coefficients
	equalization_num_coefficients

	exported_advance_trigger_output_terminal
	exported_advance_trigger_output_terminal

	exported_ref_trigger_output_terminal
	exported_ref_trigger_output_terminal

	exported_start_trigger_output_terminal
	exported_start_trigger_output_terminal

	flex_fir_antialias_filter_type
	flex_fir_antialias_filter_type

	fpga_bitfile_path
	fpga_bitfile_path

	glitch_condition
	glitch_condition

	glitch_polarity
	glitch_polarity

	glitch_width
	glitch_width

	high_pass_filter_frequency
	high_pass_filter_frequency

	horz_enforce_realtime
	horz_enforce_realtime

	horz_min_num_pts
	horz_min_num_pts

	horz_num_records
	horz_num_records

	horz_record_length
	horz_record_length

	horz_record_ref_position
	horz_record_ref_position

	horz_sample_rate
	horz_sample_rate

	horz_time_per_record
	horz_time_per_record

	input_clock_source
	input_clock_source

	input_impedance
	input_impedance

	instrument_firmware_revision
	instrument_firmware_revision

	instrument_manufacturer
	instrument_manufacturer

	instrument_model
	instrument_model

	interleaving_offset_correction_enabled
	interleaving_offset_correction_enabled

	io_resource_descriptor
	io_resource_descriptor

	is_probe_comp_on
	is_probe_comp_on

	logical_name
	logical_name

	master_enable
	master_enable

	max_input_frequency
	max_input_frequency

	max_real_time_sampling_rate
	max_real_time_sampling_rate

	max_ris_rate
	max_ris_rate

	meas_array_gain
	meas_array_gain

	meas_array_offset
	meas_array_offset

	meas_chan_high_ref_level
	meas_chan_high_ref_level

	meas_chan_low_ref_level
	meas_chan_low_ref_level

	meas_chan_mid_ref_level
	meas_chan_mid_ref_level

	meas_filter_center_freq
	meas_filter_center_freq

	meas_filter_cutoff_freq
	meas_filter_cutoff_freq

	meas_filter_order
	meas_filter_order

	meas_filter_ripple
	meas_filter_ripple

	meas_filter_taps
	meas_filter_taps

	meas_filter_transient_waveform_percent
	meas_filter_transient_waveform_percent

	meas_filter_type
	meas_filter_type

	meas_filter_width
	meas_filter_width

	meas_fir_filter_window
	meas_fir_filter_window

	meas_high_ref
	meas_high_ref

	meas_hysteresis_percent
	meas_hysteresis_percent

	meas_interpolation_sampling_factor
	meas_interpolation_sampling_factor

	meas_last_acq_histogram_size
	meas_last_acq_histogram_size

	meas_low_ref
	meas_low_ref

	meas_mid_ref
	meas_mid_ref

	meas_other_channel
	meas_other_channel

	meas_percentage_method
	meas_percentage_method

	meas_polynomial_interpolation_order
	meas_polynomial_interpolation_order

	meas_ref_level_units
	meas_ref_level_units

	meas_time_histogram_high_time
	meas_time_histogram_high_time

	meas_time_histogram_high_volts
	meas_time_histogram_high_volts

	meas_time_histogram_low_time
	meas_time_histogram_low_time

	meas_time_histogram_low_volts
	meas_time_histogram_low_volts

	meas_time_histogram_size
	meas_time_histogram_size

	meas_voltage_histogram_high_volts
	meas_voltage_histogram_high_volts

	meas_voltage_histogram_low_volts
	meas_voltage_histogram_low_volts

	meas_voltage_histogram_size
	meas_voltage_histogram_size

	min_sample_rate
	min_sample_rate

	onboard_memory_size
	onboard_memory_size

	output_clock_source
	output_clock_source

	pll_lock_status
	pll_lock_status

	points_done
	points_done

	poll_interval
	poll_interval

	probe_attenuation
	probe_attenuation

	ready_for_advance_event_output_terminal
	ready_for_advance_event_output_terminal

	ready_for_advance_event_terminal_name
	ready_for_advance_event_terminal_name

	ready_for_ref_event_output_terminal
	ready_for_ref_event_output_terminal

	ready_for_ref_event_terminal_name
	ready_for_ref_event_terminal_name

	ready_for_start_event_output_terminal
	ready_for_start_event_output_terminal

	ready_for_start_event_terminal_name
	ready_for_start_event_terminal_name

	records_done
	records_done

	record_arm_source
	record_arm_source

	ref_clk_rate
	ref_clk_rate

	ref_trigger_detector_location
	ref_trigger_detector_location

	ref_trigger_minimum_quiet_time
	ref_trigger_minimum_quiet_time

	ref_trigger_terminal_name
	ref_trigger_terminal_name

	ref_trig_tdc_enable
	ref_trig_tdc_enable

	resolution
	resolution

	ris_in_auto_setup_enable
	ris_in_auto_setup_enable

	ris_method
	ris_method

	ris_num_averages
	ris_num_averages

	runt_high_threshold
	runt_high_threshold

	runt_low_threshold
	runt_low_threshold

	runt_polarity
	runt_polarity

	runt_time_condition
	runt_time_condition

	runt_time_high_limit
	runt_time_high_limit

	runt_time_low_limit
	runt_time_low_limit

	sample_mode
	sample_mode

	samp_clk_timebase_div
	samp_clk_timebase_div

	sample_clock_timebase_multiplier
	sample_clock_timebase_multiplier

	samp_clk_timebase_rate
	samp_clk_timebase_rate

	samp_clk_timebase_src
	samp_clk_timebase_src

	serial_number
	serial_number

	accessory_gain
	accessory_gain

	accessory_offset
	accessory_offset

	simulate
	simulate

	specific_driver_description
	specific_driver_description

	specific_driver_revision
	specific_driver_revision

	specific_driver_vendor
	specific_driver_vendor

	start_to_ref_trigger_holdoff
	start_to_ref_trigger_holdoff

	start_trigger_terminal_name
	start_trigger_terminal_name

	supported_instrument_models
	supported_instrument_models

	trigger_auto_triggered
	trigger_auto_triggered

	trigger_coupling
	trigger_coupling

	trigger_delay_time
	trigger_delay_time

	trigger_holdoff
	trigger_holdoff

	trigger_hysteresis
	trigger_hysteresis

	trigger_impedance
	trigger_impedance

	trigger_level
	trigger_level

	trigger_modifier
	trigger_modifier

	trigger_slope
	trigger_slope

	trigger_source
	trigger_source

	trigger_type
	trigger_type

	trigger_window_high_level
	trigger_window_high_level

	trigger_window_low_level
	trigger_window_low_level

	trigger_window_mode
	trigger_window_mode

	tv_trigger_event
	tv_trigger_event

	tv_trigger_line_number
	tv_trigger_line_number

	tv_trigger_polarity
	tv_trigger_polarity

	tv_trigger_signal_format
	tv_trigger_signal_format

	use_spec_initial_x
	use_spec_initial_x

	vertical_coupling
	vertical_coupling

	vertical_offset
	vertical_offset

	vertical_range
	vertical_range

	width_condition
	width_condition

	width_high_threshold
	width_high_threshold

	width_low_threshold
	width_low_threshold

	width_polarity
	width_polarity

	NI-TClk Support
	tclk

	Repeated Capabilities
	channels
	niscope.Session.channels

	instruments
	niscope.Session.instruments

	Enums
	AcquisitionStatus
	AcquisitionStatus
	AcquisitionStatus.COMPLETE

	AcquisitionStatus.IN_PROGRESS

	AcquisitionStatus.STATUS_UNKNOWN

	AcquisitionType
	AcquisitionType
	AcquisitionType.NORMAL

	AcquisitionType.FLEXRES

	AcquisitionType.DDC

	ArrayMeasurement
	ArrayMeasurement
	ArrayMeasurement.NO_MEASUREMENT

	ArrayMeasurement.LAST_ACQ_HISTOGRAM

	ArrayMeasurement.FFT_PHASE_SPECTRUM

	ArrayMeasurement.FFT_AMP_SPECTRUM_VOLTS_RMS

	ArrayMeasurement.MULTI_ACQ_VOLTAGE_HISTOGRAM

	ArrayMeasurement.MULTI_ACQ_TIME_HISTOGRAM

	ArrayMeasurement.ARRAY_INTEGRAL

	ArrayMeasurement.DERIVATIVE

	ArrayMeasurement.INVERSE

	ArrayMeasurement.HANNING_WINDOW

	ArrayMeasurement.FLAT_TOP_WINDOW

	ArrayMeasurement.POLYNOMIAL_INTERPOLATION

	ArrayMeasurement.MULTIPLY_CHANNELS

	ArrayMeasurement.ADD_CHANNELS

	ArrayMeasurement.SUBTRACT_CHANNELS

	ArrayMeasurement.DIVIDE_CHANNELS

	ArrayMeasurement.MULTI_ACQ_AVERAGE

	ArrayMeasurement.BUTTERWORTH_FILTER

	ArrayMeasurement.CHEBYSHEV_FILTER

	ArrayMeasurement.FFT_AMP_SPECTRUM_DB

	ArrayMeasurement.HAMMING_WINDOW

	ArrayMeasurement.WINDOWED_FIR_FILTER

	ArrayMeasurement.BESSEL_FILTER

	ArrayMeasurement.TRIANGLE_WINDOW

	ArrayMeasurement.BLACKMAN_WINDOW

	ArrayMeasurement.ARRAY_OFFSET

	ArrayMeasurement.ARRAY_GAIN

	CableSenseMode
	CableSenseMode
	CableSenseMode.DISABLED

	CableSenseMode.ON_DEMAND

	ClearableMeasurement
	ClearableMeasurement
	ClearableMeasurement.ALL_MEASUREMENTS

	ClearableMeasurement.MULTI_ACQ_VOLTAGE_HISTOGRAM

	ClearableMeasurement.MULTI_ACQ_TIME_HISTOGRAM

	ClearableMeasurement.MULTI_ACQ_AVERAGE

	ClearableMeasurement.FREQUENCY

	ClearableMeasurement.AVERAGE_FREQUENCY

	ClearableMeasurement.FFT_FREQUENCY

	ClearableMeasurement.PERIOD

	ClearableMeasurement.AVERAGE_PERIOD

	ClearableMeasurement.RISE_TIME

	ClearableMeasurement.FALL_TIME

	ClearableMeasurement.RISE_SLEW_RATE

	ClearableMeasurement.FALL_SLEW_RATE

	ClearableMeasurement.OVERSHOOT

	ClearableMeasurement.PRESHOOT

	ClearableMeasurement.VOLTAGE_RMS

	ClearableMeasurement.VOLTAGE_CYCLE_RMS

	ClearableMeasurement.AC_ESTIMATE

	ClearableMeasurement.FFT_AMPLITUDE

	ClearableMeasurement.VOLTAGE_AVERAGE

	ClearableMeasurement.VOLTAGE_CYCLE_AVERAGE

	ClearableMeasurement.DC_ESTIMATE

	ClearableMeasurement.VOLTAGE_MAX

	ClearableMeasurement.VOLTAGE_MIN

	ClearableMeasurement.VOLTAGE_PEAK_TO_PEAK

	ClearableMeasurement.VOLTAGE_HIGH

	ClearableMeasurement.VOLTAGE_LOW

	ClearableMeasurement.AMPLITUDE

	ClearableMeasurement.VOLTAGE_TOP

	ClearableMeasurement.VOLTAGE_BASE

	ClearableMeasurement.VOLTAGE_BASE_TO_TOP

	ClearableMeasurement.WIDTH_NEG

	ClearableMeasurement.WIDTH_POS

	ClearableMeasurement.DUTY_CYCLE_NEG

	ClearableMeasurement.DUTY_CYCLE_POS

	ClearableMeasurement.INTEGRAL

	ClearableMeasurement.AREA

	ClearableMeasurement.CYCLE_AREA

	ClearableMeasurement.TIME_DELAY

	ClearableMeasurement.PHASE_DELAY

	ClearableMeasurement.LOW_REF_VOLTS

	ClearableMeasurement.MID_REF_VOLTS

	ClearableMeasurement.HIGH_REF_VOLTS

	ClearableMeasurement.VOLTAGE_HISTOGRAM_MEAN

	ClearableMeasurement.VOLTAGE_HISTOGRAM_STDEV

	ClearableMeasurement.VOLTAGE_HISTOGRAM_MEDIAN

	ClearableMeasurement.VOLTAGE_HISTOGRAM_MODE

	ClearableMeasurement.VOLTAGE_HISTOGRAM_MAX

	ClearableMeasurement.VOLTAGE_HISTOGRAM_MIN

	ClearableMeasurement.VOLTAGE_HISTOGRAM_PEAK_TO_PEAK

	ClearableMeasurement.VOLTAGE_HISTOGRAM_MEAN_PLUS_STDEV

	ClearableMeasurement.VOLTAGE_HISTOGRAM_MEAN_PLUS_2_STDEV

	ClearableMeasurement.VOLTAGE_HISTOGRAM_MEAN_PLUS_3_STDEV

	ClearableMeasurement.VOLTAGE_HISTOGRAM_HITS

	ClearableMeasurement.VOLTAGE_HISTOGRAM_NEW_HITS

	ClearableMeasurement.TIME_HISTOGRAM_MEAN

	ClearableMeasurement.TIME_HISTOGRAM_STDEV

	ClearableMeasurement.TIME_HISTOGRAM_MEDIAN

	ClearableMeasurement.TIME_HISTOGRAM_MODE

	ClearableMeasurement.TIME_HISTOGRAM_MAX

	ClearableMeasurement.TIME_HISTOGRAM_MIN

	ClearableMeasurement.TIME_HISTOGRAM_PEAK_TO_PEAK

	ClearableMeasurement.TIME_HISTOGRAM_MEAN_PLUS_STDEV

	ClearableMeasurement.TIME_HISTOGRAM_MEAN_PLUS_2_STDEV

	ClearableMeasurement.TIME_HISTOGRAM_MEAN_PLUS_3_STDEV

	ClearableMeasurement.TIME_HISTOGRAM_HITS

	ClearableMeasurement.TIME_HISTOGRAM_NEW_HITS

	FIRFilterWindow
	FIRFilterWindow
	FIRFilterWindow.NONE

	FIRFilterWindow.HANNING

	FIRFilterWindow.FLAT_TOP

	FIRFilterWindow.HAMMING

	FIRFilterWindow.TRIANGLE

	FIRFilterWindow.BLACKMAN

	FetchRelativeTo
	FetchRelativeTo
	FetchRelativeTo.READ_POINTER

	FetchRelativeTo.PRETRIGGER

	FetchRelativeTo.NOW

	FetchRelativeTo.START

	FetchRelativeTo.TRIGGER

	FilterType
	FilterType
	FilterType.LOWPASS

	FilterType.HIGHPASS

	FilterType.BANDPASS

	FilterType.BANDSTOP

	FlexFIRAntialiasFilterType
	FlexFIRAntialiasFilterType
	FlexFIRAntialiasFilterType.FOURTYEIGHT_TAP_STANDARD

	FlexFIRAntialiasFilterType.FOURTYEIGHT_TAP_HANNING

	FlexFIRAntialiasFilterType.SIXTEEN_TAP_HANNING

	FlexFIRAntialiasFilterType.EIGHT_TAP_HANNING

	GlitchCondition
	GlitchCondition
	GlitchCondition.GREATER

	GlitchCondition.LESS

	GlitchPolarity
	GlitchPolarity
	GlitchPolarity.POSITIVE

	GlitchPolarity.NEGATIVE

	GlitchPolarity.EITHER

	Option
	Option
	Option.SELF_CALIBRATE_ALL_CHANNELS

	Option.RESTORE_EXTERNAL_CALIBRATION

	PercentageMethod
	PercentageMethod
	PercentageMethod.LOWHIGH

	PercentageMethod.MINMAX

	PercentageMethod.BASETOP

	RISMethod
	RISMethod
	RISMethod.EXACT_NUM_AVERAGES

	RISMethod.MIN_NUM_AVERAGES

	RISMethod.INCOMPLETE

	RISMethod.LIMITED_BIN_WIDTH

	RefLevelUnits
	RefLevelUnits
	RefLevelUnits.VOLTS

	RefLevelUnits.PERCENTAGE

	RefTriggerDetectorLocation
	RefTriggerDetectorLocation
	RefTriggerDetectorLocation.ANALOG_DETECTION_CIRCUIT

	RefTriggerDetectorLocation.DDC_OUTPUT

	RuntPolarity
	RuntPolarity
	RuntPolarity.POSITIVE

	RuntPolarity.NEGATIVE

	RuntPolarity.EITHER

	RuntTimeCondition
	RuntTimeCondition
	RuntTimeCondition.NONE

	RuntTimeCondition.WITHIN

	RuntTimeCondition.OUTSIDE

	ScalarMeasurement
	ScalarMeasurement
	ScalarMeasurement.NO_MEASUREMENT

	ScalarMeasurement.RISE_TIME

	ScalarMeasurement.FALL_TIME

	ScalarMeasurement.FREQUENCY

	ScalarMeasurement.PERIOD

	ScalarMeasurement.VOLTAGE_RMS

	ScalarMeasurement.VOLTAGE_PEAK_TO_PEAK

	ScalarMeasurement.VOLTAGE_MAX

	ScalarMeasurement.VOLTAGE_MIN

	ScalarMeasurement.VOLTAGE_HIGH

	ScalarMeasurement.VOLTAGE_LOW

	ScalarMeasurement.VOLTAGE_AVERAGE

	ScalarMeasurement.WIDTH_NEG

	ScalarMeasurement.WIDTH_POS

	ScalarMeasurement.DUTY_CYCLE_NEG

	ScalarMeasurement.DUTY_CYCLE_POS

	ScalarMeasurement.AMPLITUDE

	ScalarMeasurement.VOLTAGE_CYCLE_RMS

	ScalarMeasurement.VOLTAGE_CYCLE_AVERAGE

	ScalarMeasurement.OVERSHOOT

	ScalarMeasurement.PRESHOOT

	ScalarMeasurement.LOW_REF_VOLTS

	ScalarMeasurement.MID_REF_VOLTS

	ScalarMeasurement.HIGH_REF_VOLTS

	ScalarMeasurement.AREA

	ScalarMeasurement.CYCLE_AREA

	ScalarMeasurement.INTEGRAL

	ScalarMeasurement.VOLTAGE_BASE

	ScalarMeasurement.VOLTAGE_TOP

	ScalarMeasurement.FFT_FREQUENCY

	ScalarMeasurement.FFT_AMPLITUDE

	ScalarMeasurement.RISE_SLEW_RATE

	ScalarMeasurement.FALL_SLEW_RATE

	ScalarMeasurement.AC_ESTIMATE

	ScalarMeasurement.DC_ESTIMATE

	ScalarMeasurement.TIME_DELAY

	ScalarMeasurement.AVERAGE_PERIOD

	ScalarMeasurement.AVERAGE_FREQUENCY

	ScalarMeasurement.VOLTAGE_BASE_TO_TOP

	ScalarMeasurement.PHASE_DELAY

	TerminalConfiguration
	TerminalConfiguration
	TerminalConfiguration.SINGLE_ENDED

	TerminalConfiguration.UNBALANCED_DIFFERENTIAL

	TerminalConfiguration.DIFFERENTIAL

	TriggerCoupling
	TriggerCoupling
	TriggerCoupling.AC

	TriggerCoupling.DC

	TriggerCoupling.HF_REJECT

	TriggerCoupling.LF_REJECT

	TriggerCoupling.AC_PLUS_HF_REJECT

	TriggerModifier
	TriggerModifier
	TriggerModifier.NO_TRIGGER_MOD

	TriggerModifier.AUTO

	TriggerModifier.AUTO_LEVEL

	TriggerSlope
	TriggerSlope
	TriggerSlope.NEGATIVE

	TriggerSlope.POSITIVE

	TriggerSlope.SLOPE_EITHER

	TriggerType
	TriggerType
	TriggerType.EDGE

	TriggerType.HYSTERESIS

	TriggerType.DIGITAL

	TriggerType.WINDOW

	TriggerType.SOFTWARE

	TriggerType.TV

	TriggerType.GLITCH

	TriggerType.WIDTH

	TriggerType.RUNT

	TriggerType.IMMEDIATE

	TriggerWindowMode
	TriggerWindowMode
	TriggerWindowMode.ENTERING

	TriggerWindowMode.LEAVING

	TriggerWindowMode.ENTERING_OR_LEAVING

	VerticalCoupling
	VerticalCoupling
	VerticalCoupling.AC

	VerticalCoupling.DC

	VerticalCoupling.GND

	VideoPolarity
	VideoPolarity
	VideoPolarity.POSITIVE

	VideoPolarity.NEGATIVE

	VideoSignalFormat
	VideoSignalFormat
	VideoSignalFormat.NTSC

	VideoSignalFormat.PAL

	VideoSignalFormat.SECAM

	VideoSignalFormat.M_PAL

	VideoSignalFormat.VIDEO_480I_59_94_FIELDS_PER_SECOND

	VideoSignalFormat.VIDEO_480I_60_FIELDS_PER_SECOND

	VideoSignalFormat.VIDEO_480P_59_94_FRAMES_PER_SECOND

	VideoSignalFormat.VIDEO_480P_60_FRAMES_PER_SECOND

	VideoSignalFormat.VIDEO_576I_50_FIELDS_PER_SECOND

	VideoSignalFormat.VIDEO_576P_50_FRAMES_PER_SECOND

	VideoSignalFormat.VIDEO_720P_50_FRAMES_PER_SECOND

	VideoSignalFormat.VIDEO_720P_59_94_FRAMES_PER_SECOND

	VideoSignalFormat.VIDEO_720P_60_FRAMES_PER_SECOND

	VideoSignalFormat.VIDEO_1080I_50_FIELDS_PER_SECOND

	VideoSignalFormat.VIDEO_1080I_59_94_FIELDS_PER_SECOND

	VideoSignalFormat.VIDEO_1080I_60_FIELDS_PER_SECOND

	VideoSignalFormat.VIDEO_1080P_24_FRAMES_PER_SECOND

	VideoTriggerEvent
	VideoTriggerEvent
	VideoTriggerEvent.FIELD1

	VideoTriggerEvent.FIELD2

	VideoTriggerEvent.ANY_FIELD

	VideoTriggerEvent.ANY_LINE

	VideoTriggerEvent.LINE_NUMBER

	WhichTrigger
	WhichTrigger
	WhichTrigger.START

	WhichTrigger.ARM_REFERENCE

	WhichTrigger.REFERENCE

	WhichTrigger.ADVANCE

	WidthCondition
	WidthCondition
	WidthCondition.WITHIN

	WidthCondition.OUTSIDE

	WidthPolarity
	WidthPolarity
	WidthPolarity.POSITIVE

	WidthPolarity.NEGATIVE

	WidthPolarity.EITHER

	Exceptions and Warnings
	Error
	Error

	DriverError
	DriverError

	UnsupportedConfigurationError
	UnsupportedConfigurationError

	DriverNotInstalledError
	DriverNotInstalledError

	DriverTooOldError
	DriverTooOldError

	DriverTooNewError
	DriverTooNewError

	InvalidRepeatedCapabilityError
	InvalidRepeatedCapabilityError

	SelfTestError
	SelfTestError

	RpcError
	RpcError

	DriverWarning
	DriverWarning

	Examples
	niscope_fetch.py

	niscope_fetch_forever.py

	niscope_fetch_into.py

	niscope_read.py

	gRPC Support
	SessionInitializationBehavior
	SessionInitializationBehavior
	SessionInitializationBehavior.AUTO

	SessionInitializationBehavior.INITIALIZE_SERVER_SESSION

	SessionInitializationBehavior.ATTACH_TO_SERVER_SESSION

	GrpcSessionOptions
	GrpcSessionOptions

Session

	
class niscope.Session(self, resource_name, id_query=False, reset_device=False, options={}, *, grpc_options=None)

	Performs the following initialization actions:

	Creates a new IVI instrument driver and optionally sets the initial
state of the following session properties: Range Check, Cache,
Simulate, Record Value Coercions

	Opens a session to the specified device using the interface and
address you specify for the resourceName

	Resets the digitizer to a known state if resetDevice is set to
True

	Queries the instrument ID and verifies that it is valid for this
instrument driver if the IDQuery is set to True

	Returns an instrument handle that you use to identify the instrument
in all subsequent instrument driver method calls

	Parameters:

	
	resource_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –
Caution

Traditional NI-DAQ and NI-DAQmx device names are not case-sensitive.
However, all IVI names, such as logical names, are case-sensitive. If
you use logical names, driver session names, or virtual names in your
program, you must make sure that the name you use matches the name in
the IVI Configuration Store file exactly, without any variations in the
case of the characters.

Specifies the resource name of the device to initialize

For Traditional NI-DAQ devices, the syntax is DAQ::n, where n is
the device number assigned by MAX, as shown in Example 1.

For NI-DAQmx devices, the syntax is just the device name specified in
MAX, as shown in Example 2. Typical default names for NI-DAQmx devices
in MAX are Dev1 or PXI1Slot1. You can rename an NI-DAQmx device by
right-clicking on the name in MAX and entering a new name.

An alternate syntax for NI-DAQmx devices consists of DAQ::NI-DAQmx
device name, as shown in Example 3. This naming convention allows for
the use of an NI-DAQmx device in an application that was originally
designed for a Traditional NI-DAQ device. For example, if the
application expects DAQ::1, you can rename the NI-DAQmx device to 1 in
MAX and pass in DAQ::1 for the resource name, as shown in Example 4.

If you use the DAQ::n syntax and an NI-DAQmx device name already
exists with that same name, the NI-DAQmx device is matched first.

You can also pass in the name of an IVI logical name or an IVI virtual
name configured with the IVI Configuration utility, as shown in Example
5. A logical name identifies a particular virtual instrument. A virtual
name identifies a specific device and specifies the initial settings for
the session.

	Example

	Device Type

	Syntax

	1

	Traditional NI-DAQ device

	DAQ::1 (1 = device number)

	2

	NI-DAQmx device

	myDAQmxDevice (myDAQmxDevice = device name)

	3

	NI-DAQmx device

	DAQ::myDAQmxDevice (myDAQmxDevice = device name)

	4

	NI-DAQmx device

	DAQ::2 (2 = device name)

	5

	IVI logical name or IVI virtual name

	myLogicalName (myLogicalName = name)

	id_query (bool [https://docs.python.org/3/library/functions.html#bool]) – Specify whether to perform an ID query.

When you set this parameter to True, NI-SCOPE verifies that the
device you initialize is a type that it supports.

When you set this parameter to False, the method initializes the
device without performing an ID query.

Defined Values

True—Perform ID query

False—Skip ID query

Default Value: True

	reset_device (bool [https://docs.python.org/3/library/functions.html#bool]) – Specify whether to reset the device during the initialization process.

Default Value: True

Defined Values

True (1)—Reset device

False (0)—Do not reset device

Note

For the NI 5112, repeatedly resetting the device may cause excessive
wear on the electromechanical relays. Refer to NI 5112
Electromechanical Relays
for recommended programming practices.

	options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Specifies the initial value of certain properties for the session. The
syntax for options is a dictionary of properties with an assigned
value. For example:

{ ‘simulate’: False }

You do not have to specify a value for all the properties. If you do not
specify a value for a property, the default value is used.

Advanced Example:
{ ‘simulate’: True, ‘driver_setup’: { ‘Model’: ‘<model number>’, ‘BoardType’: ‘<type>’ } }

	Property

	Default

	range_check

	True

	query_instrument_status

	False

	cache

	True

	simulate

	False

	record_value_coersions

	False

	driver_setup

	{}

	grpc_options (niscope.GrpcSessionOptions) – MeasurementLink gRPC session options

Methods

abort

	
niscope.Session.abort()

	Aborts an acquisition and returns the digitizer to the Idle state. Call
this method if the digitizer times out waiting for a trigger.

acquisition_status

	
niscope.Session.acquisition_status()

	Returns status information about the acquisition to the status
output parameter.

	Return type:

	niscope.AcquisitionStatus

	Returns:

	Returns whether the acquisition is complete, in progress, or unknown.

Defined Values

COMPLETE

IN_PROGRESS

STATUS_UNKNOWN

add_waveform_processing

	
niscope.Session.add_waveform_processing(meas_function)

	Adds one measurement to the list of processing steps that are completed
before the measurement. The processing is added on a per channel basis,
and the processing measurements are completed in the same order they are
registered. All measurement library parameters—the properties starting
with “meas_”—are cached at the time of registering the
processing, and this set of parameters is used during the processing
step. The processing measurements are streamed, so the result of the
first processing step is used as the input for the next step. The
processing is done before any other measurements.

Tip

This method can be called on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].add_waveform_processing()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.add_waveform_processing()

	Parameters:

	meas_function (niscope.ArrayMeasurement) – The array
measurement
to add.

auto_setup

	
niscope.Session.auto_setup()

	Automatically configures the instrument. When you call this method,
the digitizer senses the input signal and automatically configures many
of the instrument settings. If a signal is detected on a channel, the
driver chooses the smallest available vertical range that is larger than
the signal range. For example, if the signal is a 1.2 Vpk-pk
sine wave, and the device supports 1 V and 2 V vertical ranges, the
driver will choose the 2 V vertical range for that channel.

If no signal is found on any analog input channel, a warning is
returned, and all channels are enabled. A channel is considered to have
a signal present if the signal is at least 10% of the smallest vertical
range available for that channel.

The following settings are changed:

	General

	

	Acquisition mode

	Normal

	Reference clock

	Internal

	Vertical

	

	Vertical coupling

	AC (DC for NI 5621)

	Vertical bandwidth

	Full

	Vertical range

	Changed by auto setup

	Vertical offset

	0 V

	Probe attenuation

	Unchanged by auto setup

	Input impedance

	Unchanged by auto setup

	Horizontal

	

	Sample rate

	Changed by auto setup

	Min record length

	Changed by auto setup

	Enforce realtime

	True

	Number of Records

	Changed to 1

	Triggering

	

	Trigger type

	Edge if signal present, otherwise immediate

	Trigger channel

	Lowest numbered channel with a signal present

	Trigger slope

	Positive

	Trigger coupling

	DC

	Reference position

	50%

	Trigger level

	50% of signal on trigger channel

	Trigger delay

	0

	Trigger holdoff

	0

	Trigger output

	None

clear_waveform_measurement_stats

	
niscope.Session.clear_waveform_measurement_stats(clearable_measurement_function=niscope.ClearableMeasurement.ALL_MEASUREMENTS)

	Clears the waveform stats on the channel and measurement you specify. If
you want to clear all of the measurements, use
ALL_MEASUREMENTS in the clearableMeasurementFunction
parameter.

Every time a measurement is called, the statistics information is
updated, including the min, max, mean, standard deviation, and number of
updates. This information is fetched with
niscope.Session._fetch_measurement_stats(). The multi-acquisition array measurements
are also cleared with this method.

Tip

This method can be called on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].clear_waveform_measurement_stats()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.clear_waveform_measurement_stats()

	Parameters:

	clearable_measurement_function (niscope.ClearableMeasurement) – The scalar
measurement
or array
measurement
to clear the stats for.

clear_waveform_processing

	
niscope.Session.clear_waveform_processing()

	Clears the list of processing steps assigned to the given channel. The
processing is added using the niscope.Session.add_waveform_processing() method,
where the processing steps are completed in the same order in which they
are registered. The processing measurements are streamed, so the result
of the first processing step is used as the input for the next step. The
processing is also done before any other measurements.

Tip

This method can be called on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].clear_waveform_processing()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.clear_waveform_processing()

close

	
niscope.Session.close()

	When you are finished using an instrument driver session, you must call
this method to perform the following actions:

	Closes the instrument I/O session.

	Destroys the IVI session and all of its properties.

	Deallocates any memory resources used by the IVI session.

Note

This method is not needed when using the session context manager

commit

	
niscope.Session.commit()

	Commits to hardware all the parameter settings associated with the task.
Use this method if you want a parameter change to be immediately
reflected in the hardware. This method is not supported for
Traditional NI-DAQ (Legacy) devices.

configure_chan_characteristics

	
niscope.Session.configure_chan_characteristics(input_impedance, max_input_frequency)

	Configures the properties that control the electrical characteristics of
the channel—the input impedance and the bandwidth.

Tip

This method can be called on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].configure_chan_characteristics()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.configure_chan_characteristics()

	Parameters:

	
	input_impedance (float [https://docs.python.org/3/library/functions.html#float]) – The input impedance for the channel; NI-SCOPE sets
niscope.Session.input_impedance to this value.

	max_input_frequency (float [https://docs.python.org/3/library/functions.html#float]) – The bandwidth for the channel; NI-SCOPE sets
niscope.Session.max_input_frequency to this value. Pass 0 for this
value to use the hardware default bandwidth. Pass –1 for this value to
achieve full bandwidth.

configure_equalization_filter_coefficients

	
niscope.Session.configure_equalization_filter_coefficients(coefficients)

	Configures the custom coefficients for the equalization FIR filter on
the device. This filter is designed to compensate the input signal for
artifacts introduced to the signal outside of the digitizer. Because
this filter is a generic FIR filter, any coefficients are valid.
Coefficient values should be between +1 and –1.

Tip

This method can be called on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].configure_equalization_filter_coefficients()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.configure_equalization_filter_coefficients()

	Parameters:

	coefficients (list [https://docs.python.org/3/library/stdtypes.html#list] of float [https://docs.python.org/3/library/functions.html#float]) – The custom coefficients for the equalization FIR filter on the device.
These coefficients should be between +1 and –1. You can obtain the
number of coefficients from the
:py:attr:`niscope.Session.equalization_num_coefficients <cvi:py:attr:niscope.Session.equalization_num_coefficients.html>`__
property. The
:py:attr:`niscope.Session.equalization_filter_enabled <cvi:py:attr:niscope.Session.equalization_filter_enabled.html>`__
property must be set to TRUE to enable the filter.

configure_horizontal_timing

	
niscope.Session.configure_horizontal_timing(min_sample_rate, min_num_pts, ref_position, num_records, enforce_realtime)

	Configures the common properties of the horizontal subsystem for a
multirecord acquisition in terms of minimum sample rate.

	Parameters:

	
	min_sample_rate (float [https://docs.python.org/3/library/functions.html#float]) – The sampling rate for the acquisition. Refer to
niscope.Session.min_sample_rate for more information.

	min_num_pts (int [https://docs.python.org/3/library/functions.html#int]) – The minimum number of points you need in the record for each channel;
call niscope.Session.ActualRecordLength() to obtain the actual record length
used.

Valid Values: Greater than 1; limited by available memory

Note

One or more of the referenced methods are not in the Python API for this driver.

	ref_position (float [https://docs.python.org/3/library/functions.html#float]) – The position of the Reference Event in the waveform record specified as
a percentage.

	num_records (int [https://docs.python.org/3/library/functions.html#int]) – The number of records to acquire

	enforce_realtime (bool [https://docs.python.org/3/library/functions.html#bool]) – Indicates whether the digitizer enforces real-time measurements or
allows equivalent-time (RIS) measurements; not all digitizers support
RIS—refer to Features Supported by
Device for
more information.

Default value: True

Defined Values

True—Allow real-time acquisitions only

False—Allow real-time and equivalent-time acquisitions

configure_trigger_digital

	
niscope.Session.configure_trigger_digital(trigger_source, slope=niscope.TriggerSlope.POSITIVE, holdoff=hightime.timedelta(seconds=0.0), delay=hightime.timedelta(seconds=0.0))

	Configures the common properties of a digital trigger.

When you initiate an acquisition, the digitizer waits for the start
trigger, which is configured through the niscope.Session.acq_arm_source
(Start Trigger Source) property. The default is immediate. Upon
receiving the start trigger the digitizer begins sampling pretrigger
points. After the digitizer finishes sampling pretrigger points, the
digitizer waits for a reference (stop) trigger that you specify with a
method such as this one. Upon receiving the reference trigger the
digitizer finishes the acquisition after completing posttrigger
sampling. With each Configure Trigger method, you specify
configuration parameters such as the trigger source and the amount of
trigger delay.

Note

For multirecord acquisitions, all records after the first record are
started by using the Advance Trigger Source. The default is immediate.

You can adjust the amount of pre-trigger and post-trigger samples using
the reference position parameter on the
niscope.Session.configure_horizontal_timing() method. The default is half of the
record length.

Some features are not supported by all digitizers. Refer to Features
Supported by
Device for
more information.

Digital triggering is not supported in RIS mode.

	Parameters:

	
	trigger_source (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the trigger source. Refer to niscope.Session.trigger_source
for defined values.

	slope (niscope.TriggerSlope) – Specifies whether you want a rising edge or a falling edge to trigger
the digitizer. Refer to niscope.Session.trigger_slope for more
information.

	holdoff (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – The length of time the digitizer waits after detecting a trigger before
enabling NI-SCOPE to detect another trigger. Refer to
niscope.Session.trigger_holdoff for more information.

	delay (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – How long the digitizer waits after receiving the trigger to start
acquiring data. Refer to niscope.Session.trigger_delay_time for more
information.

configure_trigger_edge

	
niscope.Session.configure_trigger_edge(trigger_source, level, trigger_coupling, slope=niscope.TriggerSlope.POSITIVE, holdoff=hightime.timedelta(seconds=0.0), delay=hightime.timedelta(seconds=0.0))

	Configures common properties for analog edge triggering.

When you initiate an acquisition, the digitizer waits for the start
trigger, which is configured through the niscope.Session.acq_arm_source
(Start Trigger Source) property. The default is immediate. Upon
receiving the start trigger the digitizer begins sampling pretrigger
points. After the digitizer finishes sampling pretrigger points, the
digitizer waits for a reference (stop) trigger that you specify with a
method such as this one. Upon receiving the reference trigger the
digitizer finishes the acquisition after completing posttrigger
sampling. With each Configure Trigger method, you specify
configuration parameters such as the trigger source and the amount of
trigger delay.

Note

Some features are not supported by all digitizers. Refer to Features
Supported by
Device for
more information.

	Parameters:

	
	trigger_source (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the trigger source. Refer to niscope.Session.trigger_source
for defined values.

	level (float [https://docs.python.org/3/library/functions.html#float]) – The voltage threshold for the trigger. Refer to
niscope.Session.trigger_level for more information.

	trigger_coupling (niscope.TriggerCoupling) – Applies coupling and filtering options to the trigger signal. Refer to
niscope.Session.trigger_coupling for more information.

	slope (niscope.TriggerSlope) – Specifies whether you want a rising edge or a falling edge to trigger
the digitizer. Refer to niscope.Session.trigger_slope for more
information.

	holdoff (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – The length of time the digitizer waits after detecting a trigger before
enabling NI-SCOPE to detect another trigger. Refer to
niscope.Session.trigger_holdoff for more information.

	delay (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – How long the digitizer waits after receiving the trigger to start
acquiring data. Refer to niscope.Session.trigger_delay_time for more
information.

configure_trigger_hysteresis

	
niscope.Session.configure_trigger_hysteresis(trigger_source, level, hysteresis, trigger_coupling, slope=niscope.TriggerSlope.POSITIVE, holdoff=hightime.timedelta(seconds=0.0), delay=hightime.timedelta(seconds=0.0))

	Configures common properties for analog hysteresis triggering. This kind
of trigger specifies an additional value, specified in the
hysteresis parameter, that a signal must pass through before a
trigger can occur. This additional value acts as a kind of buffer zone
that keeps noise from triggering an acquisition.

When you initiate an acquisition, the digitizer waits for the start
trigger, which is configured through the
niscope.Session.acq_arm_source. The default is immediate. Upon
receiving the start trigger the digitizer begins sampling pretrigger
points. After the digitizer finishes sampling pretrigger points, the
digitizer waits for a reference (stop) trigger that you specify with a
method such as this one. Upon receiving the reference trigger the
digitizer finishes the acquisition after completing posttrigger
sampling. With each Configure Trigger method, you specify
configuration parameters such as the trigger source and the amount of
trigger delay.

Note

Some features are not supported by all digitizers. Refer to Features
Supported by
Device for
more information.

	Parameters:

	
	trigger_source (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the trigger source. Refer to niscope.Session.trigger_source
for defined values.

	level (float [https://docs.python.org/3/library/functions.html#float]) – The voltage threshold for the trigger. Refer to
niscope.Session.trigger_level for more information.

	hysteresis (float [https://docs.python.org/3/library/functions.html#float]) – The size of the hysteresis window on either side of the level in
volts; the digitizer triggers when the trigger signal passes through the
hysteresis value you specify with this parameter, has the slope you
specify with slope, and passes through the level. Refer to
niscope.Session.trigger_hysteresis for defined values.

	trigger_coupling (niscope.TriggerCoupling) – Applies coupling and filtering options to the trigger signal. Refer to
niscope.Session.trigger_coupling for more information.

	slope (niscope.TriggerSlope) – Specifies whether you want a rising edge or a falling edge to trigger
the digitizer. Refer to niscope.Session.trigger_slope for more
information.

	holdoff (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – The length of time the digitizer waits after detecting a trigger before
enabling NI-SCOPE to detect another trigger. Refer to
niscope.Session.trigger_holdoff for more information.

	delay (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – How long the digitizer waits after receiving the trigger to start
acquiring data. Refer to niscope.Session.trigger_delay_time for more
information.

configure_trigger_immediate

	
niscope.Session.configure_trigger_immediate()

	Configures common properties for immediate triggering. Immediate
triggering means the digitizer triggers itself.

When you initiate an acquisition, the digitizer waits for a trigger. You
specify the type of trigger that the digitizer waits for with a
Configure Trigger method, such as niscope.Session.configure_trigger_immediate().

configure_trigger_software

	
niscope.Session.configure_trigger_software(holdoff=hightime.timedelta(seconds=0.0), delay=hightime.timedelta(seconds=0.0))

	Configures common properties for software triggering.

When you initiate an acquisition, the digitizer waits for the start
trigger, which is configured through the niscope.Session.acq_arm_source
(Start Trigger Source) property. The default is immediate. Upon
receiving the start trigger the digitizer begins sampling pretrigger
points. After the digitizer finishes sampling pretrigger points, the
digitizer waits for a reference (stop) trigger that you specify with a
method such as this one. Upon receiving the reference trigger the
digitizer finishes the acquisition after completing posttrigger
sampling. With each Configure Trigger method, you specify
configuration parameters such as the trigger source and the amount of
trigger delay.

To trigger the acquisition, use niscope.Session.send_software_trigger_edge().

Note

Some features are not supported by all digitizers. Refer to Features
Supported by
Device for
more information.

	Parameters:

	
	holdoff (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – The length of time the digitizer waits after detecting a trigger before
enabling NI-SCOPE to detect another trigger. Refer to
niscope.Session.trigger_holdoff for more information.

	delay (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – How long the digitizer waits after receiving the trigger to start
acquiring data. Refer to niscope.Session.trigger_delay_time for more
information.

configure_trigger_video

	
niscope.Session.configure_trigger_video(trigger_source, signal_format, event, polarity, trigger_coupling, enable_dc_restore=False, line_number=1, holdoff=hightime.timedelta(seconds=0.0), delay=hightime.timedelta(seconds=0.0))

	Configures the common properties for video triggering, including the
signal format, TV event, line number, polarity, and enable DC restore. A
video trigger occurs when the digitizer finds a valid video signal sync.

When you initiate an acquisition, the digitizer waits for the start
trigger, which is configured through the niscope.Session.acq_arm_source
(Start Trigger Source) property. The default is immediate. Upon
receiving the start trigger the digitizer begins sampling pretrigger
points. After the digitizer finishes sampling pretrigger points, the
digitizer waits for a reference (stop) trigger that you specify with a
method such as this one. Upon receiving the reference trigger the
digitizer finishes the acquisition after completing posttrigger
sampling. With each Configure Trigger method, you specify
configuration parameters such as the trigger source and the amount of
trigger delay.

Note

Some features are not supported by all digitizers. Refer to Features
Supported by
Device for
more information.

	Parameters:

	
	trigger_source (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the trigger source. Refer to niscope.Session.trigger_source
for defined values.

	signal_format (niscope.VideoSignalFormat) – Specifies the type of video signal sync the digitizer should look for.
Refer to niscope.Session.tv_trigger_signal_format for more
information.

	event (niscope.VideoTriggerEvent) – Specifies the TV event you want to trigger on. You can trigger on a
specific or on the next coming line or field of the signal.

	polarity (niscope.VideoPolarity) – Specifies the polarity of the video signal sync.

	trigger_coupling (niscope.TriggerCoupling) – Applies coupling and filtering options to the trigger signal. Refer to
niscope.Session.trigger_coupling for more information.

	enable_dc_restore (bool [https://docs.python.org/3/library/functions.html#bool]) – Offsets each video line so the clamping level (the portion of the video
line between the end of the color burst and the beginning of the active
image) is moved to zero volt. Refer to
niscope.Session.enable_dc_restore for defined values.

	line_number (int [https://docs.python.org/3/library/functions.html#int]) – Selects the line number to trigger on. The line number range covers an
entire frame and is referenced as shown on Vertical Blanking and
Synchronization
Signal. Refer to
niscope.Session.tv_trigger_line_number for more information.

Default value: 1

	holdoff (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – The length of time the digitizer waits after detecting a trigger before
enabling NI-SCOPE to detect another trigger. Refer to
niscope.Session.trigger_holdoff for more information.

	delay (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – How long the digitizer waits after receiving the trigger to start
acquiring data. Refer to niscope.Session.trigger_delay_time for more
information.

configure_trigger_window

	
niscope.Session.configure_trigger_window(trigger_source, low_level, high_level, window_mode, trigger_coupling, holdoff=hightime.timedelta(seconds=0.0), delay=hightime.timedelta(seconds=0.0))

	Configures common properties for analog window triggering. A window
trigger occurs when a signal enters or leaves a window you specify with
the high level or low level parameters.

When you initiate an acquisition, the digitizer waits for the start
trigger, which is configured through the niscope.Session.acq_arm_source
(Start Trigger Source) property. The default is immediate. Upon
receiving the start trigger the digitizer begins sampling pretrigger
points. After the digitizer finishes sampling pretrigger points, the
digitizer waits for a reference (stop) trigger that you specify with a
method such as this one. Upon receiving the reference trigger the
digitizer finishes the acquisition after completing posttrigger
sampling. With each Configure Trigger method, you specify
configuration parameters such as the trigger source and the amount of
trigger delay.

To trigger the acquisition, use niscope.Session.send_software_trigger_edge().

Note

Some features are not supported by all digitizers.

	Parameters:

	
	trigger_source (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the trigger source. Refer to niscope.Session.trigger_source
for defined values.

	low_level (float [https://docs.python.org/3/library/functions.html#float]) – Passes the voltage threshold you want the digitizer to use for low
triggering.

	high_level (float [https://docs.python.org/3/library/functions.html#float]) – Passes the voltage threshold you want the digitizer to use for high
triggering.

	window_mode (niscope.TriggerWindowMode) – Specifies whether you want the trigger to occur when the signal enters
or leaves a window.

	trigger_coupling (niscope.TriggerCoupling) – Applies coupling and filtering options to the trigger signal. Refer to
niscope.Session.trigger_coupling for more information.

	holdoff (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – The length of time the digitizer waits after detecting a trigger before
enabling NI-SCOPE to detect another trigger. Refer to
niscope.Session.trigger_holdoff for more information.

	delay (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – How long the digitizer waits after receiving the trigger to start
acquiring data. Refer to niscope.Session.trigger_delay_time for more
information.

configure_vertical

	
niscope.Session.configure_vertical(range, coupling, offset=0.0, probe_attenuation=1.0, enabled=True)

	Configures the most commonly configured properties of the digitizer
vertical subsystem, such as the range, offset, coupling, probe
attenuation, and the channel.

Tip

This method can be called on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].configure_vertical()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.configure_vertical()

	Parameters:

	
	range (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the vertical range Refer to niscope.Session.vertical_range for
more information.

	coupling (niscope.VerticalCoupling) – Specifies how to couple the input signal. Refer to
niscope.Session.vertical_coupling for more information.

	offset (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the vertical offset. Refer to niscope.Session.vertical_offset
for more information.

	probe_attenuation (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the probe attenuation. Refer to
niscope.Session.probe_attenuation for valid values.

	enabled (bool [https://docs.python.org/3/library/functions.html#bool]) – Specifies whether the channel is enabled for acquisition. Refer to
niscope.Session.channel_enabled for more information.

disable

	
niscope.Session.disable()

	Aborts any current operation, opens data channel relays, and releases
RTSI and PFI lines.

export_attribute_configuration_buffer

	
niscope.Session.export_attribute_configuration_buffer()

	Exports the property configuration of the session to a configuration
buffer.

You can export and import session property configurations only between
devices with identical model numbers, channel counts, and onboard memory
sizes.

This method verifies that the properties you have configured for the
session are valid. If the configuration is invalid, NI‑SCOPE returns an
error.

Related Topics:

Properties and Property
Methods

Setting Properties Before Reading
Properties

	Return type:

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Returns:

	Specifies the byte array buffer to be populated with the exported
property configuration.

export_attribute_configuration_file

	
niscope.Session.export_attribute_configuration_file(file_path)

	Exports the property configuration of the session to the specified
file.

You can export and import session property configurations only between
devices with identical model numbers, channel counts, and onboard memory
sizes.

This method verifies that the properties you have configured for the
session are valid. If the configuration is invalid, NI‑SCOPE returns an
error.

Related Topics:

Properties and Property
Methods

Setting Properties Before Reading
Properties

	Parameters:

	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the absolute path to the file to contain the exported
property configuration. If you specify an empty or relative path, this
method returns an error.
Default file extension: .niscopeconfig

fetch

	
niscope.Session.fetch(num_samples=None, relative_to=niscope.FetchRelativeTo.PRETRIGGER, offset=0, record_number=0, num_records=None, timeout=hightime.timedelta(seconds=5.0))

	Returns the waveform from a previously initiated acquisition that the
digitizer acquires for the specified channel. This method returns
scaled voltage waveforms.

This method may return multiple waveforms depending on the number of
channels, the acquisition type, and the number of records you specify.

Note

Some functionality, such as time stamping, is not supported in all digitizers.

Tip

This method can be called on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].fetch()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.fetch()

	Parameters:

	
	num_samples (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of samples to fetch for each waveform. If the acquisition finishes with fewer points than requested, some devices return partial data if the acquisition finished, was aborted, or a timeout of 0 was used. If it fails to complete within the timeout period, the method raises.

	relative_to (niscope.FetchRelativeTo) – Position to start fetching within one record.

	offset (int [https://docs.python.org/3/library/functions.html#int]) – Offset in samples to start fetching data within each record. The offset can be positive or negative.

	record_number (int [https://docs.python.org/3/library/functions.html#int]) – Zero-based index of the first record to fetch.

	num_records (int [https://docs.python.org/3/library/functions.html#int]) – Number of records to fetch. Use -1 to fetch all configured records.

	timeout (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – The time to wait for data to be acquired; using 0 for this parameter tells NI-SCOPE to fetch whatever is currently available. Using -1 seconds for this parameter implies infinite timeout.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of WaveformInfo

	Returns:

	Returns a list of class instances with the following timing and scaling information about each waveform:

	relative_initial_x (float) the time (in seconds) from the trigger to the first sample in the fetched waveform

	absolute_initial_x (float) timestamp (in seconds) of the first fetched sample. This timestamp is comparable between records and acquisitions; devices that do not support this parameter use 0 for this output.

	x_increment (float) the time between points in the acquired waveform in seconds

	channel (str) channel name this waveform was acquired from

	record (int) record number of this waveform

	gain (float) the gain factor of the given channel; useful for scaling binary data with the following formula:

\[voltage = binary data * gain factor + offset\]

	offset (float) the offset factor of the given channel; useful for scaling binary data with the following formula:

\[voltage = binary data * gain factor + offset\]

	samples (array of float) floating point array of samples. Length will be of the actual samples acquired

fetch_array_measurement

	
niscope.Session.fetch_array_measurement(array_meas_function, meas_wfm_size=None, relative_to=niscope.FetchRelativeTo.PRETRIGGER, offset=0, record_number=0, num_records=None, meas_num_samples=None, timeout=hightime.timedelta(seconds=5.0))

	Obtains a waveform from the digitizer and returns the specified
measurement array. This method may return multiple waveforms depending
on the number of channels, the acquisition type, and the number of
records you specify.

Note

Some functionality, such as time stamping, is not supported in all
digitizers.

Tip

This method can be called on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].fetch_array_measurement()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.fetch_array_measurement()

	Parameters:

	
	array_meas_function (niscope.ArrayMeasurement) – The array measurement to perform.

	meas_wfm_size (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of samples returned in the measurement waveform array
for each waveform measurement. Default Value: None (returns all available samples).

	relative_to (niscope.FetchRelativeTo) – Position to start fetching within one record.

	offset (int [https://docs.python.org/3/library/functions.html#int]) – Offset in samples to start fetching data within each record. The offset can be positive or negative.

	record_number (int [https://docs.python.org/3/library/functions.html#int]) – Zero-based index of the first record to fetch.

	num_records (int [https://docs.python.org/3/library/functions.html#int]) – Number of records to fetch. Use None to fetch all configured records.

	meas_num_samples (int [https://docs.python.org/3/library/functions.html#int]) – Number of samples to fetch when performing a measurement. Use None to fetch the actual record length.

	timeout (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – The time to wait in seconds for data to be acquired; using 0 for this
parameter tells NI-SCOPE to fetch whatever is currently available. Using
-1 for this parameter implies infinite timeout.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of WaveformInfo

	Returns:

	Returns a list of class instances with the following timing and scaling
information about each waveform:

	relativeInitialX—the time (in seconds) from the trigger to the
first sample in the fetched waveform

	absoluteInitialX—timestamp (in seconds) of the first fetched
sample. This timestamp is comparable between records and
acquisitions; devices that do not support this parameter use 0 for
this output.

	xIncrement—the time between points in the acquired waveform in
seconds

	channel-channel name this waveform was acquired from

	record-record number of this waveform

	gain—the gain factor of the given channel; useful for scaling
binary data with the following formula:

voltage = binary data × gain factor + offset

	offset—the offset factor of the given channel; useful for scaling
binary data with the following formula:

voltage = binary data × gain factor + offset

	samples-floating point array of samples. Length will be of actual samples acquired.

fetch_into

	
niscope.Session.fetch_into(waveform, relative_to=niscope.FetchRelativeTo.PRETRIGGER, offset=0, record_number=0, num_records=None, timeout=hightime.timedelta(seconds=5.0))

	Returns the waveform from a previously initiated acquisition that the
digitizer acquires for the specified channel. This method returns
scaled voltage waveforms.

This method may return multiple waveforms depending on the number of
channels, the acquisition type, and the number of records you specify.

Note

Some functionality, such as time stamping, is not supported in all digitizers.

Tip

This method can be called on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].fetch()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.fetch()

	Parameters:

	
	waveform (array.array [https://docs.python.org/3/library/array.html#array.array]("d")) – numpy array of the appropriate type and size that should be acquired as a 1D array. Size should be num_samples times number of waveforms. Call niscope.Session._actual_num_wfms() to determine the number of waveforms.

Types supported are

	numpy.float64

	numpy.int8

	numpy.in16

	numpy.int32

Example:

waveform = numpy.ndarray(num_samples * session.actual_num_wfms(), dtype=numpy.float64)
wfm_info = session['0,1'].fetch_into(waveform, timeout=5.0)

	relative_to (niscope.FetchRelativeTo) – Position to start fetching within one record.

	offset (int [https://docs.python.org/3/library/functions.html#int]) – Offset in samples to start fetching data within each record.The offset can be positive or negative.

	record_number (int [https://docs.python.org/3/library/functions.html#int]) – Zero-based index of the first record to fetch.

	num_records (int [https://docs.python.org/3/library/functions.html#int]) – Number of records to fetch. Use -1 to fetch all configured records.

	timeout (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – The time to wait in seconds for data to be acquired; using 0 for this parameter tells NI-SCOPE to fetch whatever is currently available. Using -1 for this parameter implies infinite timeout.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of WaveformInfo

	Returns:

	Returns a list of class instances with the following timing and scaling information about each waveform:

	relative_initial_x (float) the time (in seconds) from the trigger to the first sample in the fetched waveform

	absolute_initial_x (float) timestamp (in seconds) of the first fetched sample. This timestamp is comparable between records and acquisitions; devices that do not support this parameter use 0 for this output.

	x_increment (float) the time between points in the acquired waveform in seconds

	channel (str) channel name this waveform was acquired from

	record (int) record number of this waveform

	gain (float) the gain factor of the given channel; useful for scaling binary data with the following formula:

\[voltage = binary data * gain factor + offset\]

	offset (float) the offset factor of the given channel; useful for scaling binary data with the following formula:

\[voltage = binary data * gain factor + offset\]

	samples (array of float) floating point array of samples. Length will be of the actual samples acquired

fetch_measurement_stats

	
niscope.Session.fetch_measurement_stats(scalar_meas_function, relative_to=niscope.FetchRelativeTo.PRETRIGGER, offset=0, record_number=0, num_records=None, timeout=hightime.timedelta(seconds=5.0))

	Obtains a waveform measurement and returns the measurement value. This
method may return multiple statistical results depending on the number
of channels, the acquisition type, and the number of records you
specify.

You specify a particular measurement type, such as rise time, frequency,
or voltage peak-to-peak. The waveform on which the digitizer calculates
the waveform measurement is from an acquisition that you previously
initiated. The statistics for the specified measurement method are
returned, where the statistics are updated once every acquisition when
the specified measurement is fetched by any of the Fetch Measurement
methods. If a Fetch Measurement method has not been called, this
method fetches the data on which to perform the measurement. The
statistics are cleared by calling
niscope.Session.clear_waveform_measurement_stats().

Many of the measurements use the low, mid, and high reference levels.
You configure the low, mid, and high references with
niscope.Session.meas_chan_low_ref_level,
niscope.Session.meas_chan_mid_ref_level, and
niscope.Session.meas_chan_high_ref_level to set each channel
differently.

Tip

This method can be called on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].fetch_measurement_stats()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.fetch_measurement_stats()

	Parameters:

	
	scalar_meas_function (niscope.ScalarMeasurement) – The scalar measurement to be performed on each fetched waveform.

	relative_to (niscope.FetchRelativeTo) – Position to start fetching within one record.

	offset (int [https://docs.python.org/3/library/functions.html#int]) – Offset in samples to start fetching data within each record. The offset can be positive or negative.

	record_number (int [https://docs.python.org/3/library/functions.html#int]) – Zero-based index of the first record to fetch.

	num_records (int [https://docs.python.org/3/library/functions.html#int]) – Number of records to fetch. Use None to fetch all configured records.

	timeout (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – The time to wait in seconds for data to be acquired; using 0 for this
parameter tells NI-SCOPE to fetch whatever is currently available. Using
-1 for this parameter implies infinite timeout.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of MeasurementStats

	Returns:

	Returns a list of class instances with the following measurement statistics
about the specified measurement:

	result (float): the resulting measurement

	mean (float): the mean scalar value, which is obtained by

averaging each fetch_measurement_stats call
- stdev (float): the standard deviations of the most recent
numInStats measurements
- min_val (float): the smallest scalar value acquired (the minimum
of the numInStats measurements)
- max_val (float): the largest scalar value acquired (the maximum
of the numInStats measurements)
- num_in_stats (int): the number of times fetch_measurement_stats has been called
- channel (str): channel name this result was acquired from
- record (int): record number of this result

get_channel_names

	
niscope.Session.get_channel_names(indices)

	Returns a list of channel names for given channel indices.

	Parameters:

	indices (basic sequence types, str [https://docs.python.org/3/library/stdtypes.html#str], or int [https://docs.python.org/3/library/functions.html#int]) – Index list for the channels in the session. Valid values are from zero to the total number of channels in the session minus one. The index string can be one of the following formats:

	A comma-separated list—for example, “0,2,3,1”

	A range using a hyphen—for example, “0-3”

	A range using a colon—for example, “0:3 “

You can combine comma-separated lists and ranges that use a hyphen or colon. Both out-of-order and repeated indices are supported (“2,3,0”, “1,2,2,3”). White space characters, including spaces, tabs, feeds, and carriage returns, are allowed between characters. Ranges can be incrementing or decrementing.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns:

	The channel name(s) at the specified indices.

get_equalization_filter_coefficients

	
niscope.Session.get_equalization_filter_coefficients()

	Retrieves the custom coefficients for the equalization FIR filter on the device. This filter is designed to compensate the input signal for artifacts introduced to the signal outside of the digitizer. Because this filter is a generic FIR filter, any coefficients are valid. Coefficient values should be between +1 and –1.

Tip

This method can be called on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].get_equalization_filter_coefficients()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.get_equalization_filter_coefficients()

get_ext_cal_last_date_and_time

	
niscope.Session.get_ext_cal_last_date_and_time()

	Returns the date and time of the last external calibration performed.

	Return type:

	hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds

	Returns:

	Indicates the date of the last calibration. A hightime.datetime object is returned, but only contains resolution to the day.

get_ext_cal_last_temp

	
niscope.Session.get_ext_cal_last_temp()

	Returns the onboard temperature, in degrees Celsius, of an oscilloscope at the time of the last successful external calibration.
The temperature returned by this node is an onboard temperature read from a sensor on the surface of the oscilloscope. This temperature should not be confused with the environmental temperature of the oscilloscope surroundings. During operation, the onboard temperature is normally higher than the environmental temperature.
Temperature-sensitive parameters are calibrated during self-calibration. Therefore, the self-calibration temperature is usually more important to read than the external calibration temperature.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	Returns:

	Returns the temperature in degrees Celsius during the last calibration.

get_self_cal_last_date_and_time

	
niscope.Session.get_self_cal_last_date_and_time()

	Returns the date and time of the last self calibration performed.

	Return type:

	hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds

	Returns:

	Indicates the date of the last calibration. A hightime.datetime object is returned, but only contains resolution to the day.

get_self_cal_last_temp

	
niscope.Session.get_self_cal_last_temp()

	Returns the onboard temperature, in degrees Celsius, of an oscilloscope at the time of the last successful self calibration.
The temperature returned by this node is an onboard temperature read from a sensor on the surface of the oscilloscope. This temperature should not be confused with the environmental temperature of the oscilloscope surroundings. During operation, the onboard temperature is normally higher than the environmental temperature.
Temperature-sensitive parameters are calibrated during self-calibration. Therefore, the self-calibration temperature is usually more important to read than the external calibration temperature.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	Returns:

	Returns the temperature in degrees Celsius during the last calibration.

import_attribute_configuration_buffer

	
niscope.Session.import_attribute_configuration_buffer(configuration)

	Imports a property configuration to the session from the specified
configuration buffer.

You can export and import session property configurations only between
devices with identical model numbers, channel counts, and onboard memory
sizes.

Related Topics:

Properties and Property
Methods

Setting Properties Before Reading
Properties

Note

You cannot call this method while the session is in a running state,
such as while acquiring a signal.

	Parameters:

	configuration (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Specifies the byte array buffer that contains the property
configuration to import.

import_attribute_configuration_file

	
niscope.Session.import_attribute_configuration_file(file_path)

	Imports a property configuration to the session from the specified
file.

You can export and import session property configurations only between
devices with identical model numbers, channel counts, and onboard memory
sizes.

Related Topics:

Properties and Property
Methods

Setting Properties Before Reading
Properties

Note

You cannot call this method while the session is in a running state,
such as while acquiring a signal.

	Parameters:

	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the absolute path to the file containing the property
configuration to import. If you specify an empty or relative path, this
method returns an error.
Default File Extension: .niscopeconfig

initiate

	
niscope.Session.initiate()

	Initiates a waveform acquisition.

After calling this method, the digitizer leaves the Idle state and
waits for a trigger. The digitizer acquires a waveform for each channel
you enable with niscope.Session.configure_vertical().

Note

This method will return a Python context manager that will initiate on entering and abort on exit.

lock

	
niscope.Session.lock()

	Obtains a multithread lock on the device session. Before doing so, the
software waits until all other execution threads release their locks
on the device session.

Other threads may have obtained a lock on this session for the
following reasons:

	The application called the niscope.Session.lock() method.

	A call to NI-SCOPE locked the session.

	After a call to the niscope.Session.lock() method returns
successfully, no other threads can access the device session until
you call the niscope.Session.unlock() method or exit out of the with block when using
lock context manager.

	Use the niscope.Session.lock() method and the
niscope.Session.unlock() method around a sequence of calls to
instrument driver methods if you require that the device retain its
settings through the end of the sequence.

You can safely make nested calls to the niscope.Session.lock() method
within the same thread. To completely unlock the session, you must
balance each call to the niscope.Session.lock() method with a call to
the niscope.Session.unlock() method.

One method for ensuring there are the same number of unlock method calls as there is lock calls
is to use lock as a context manager

with niscope.Session('dev1') as session:
 with session.lock():
 # Calls to session within a single lock context

The first with block ensures the session is closed regardless of any exceptions raised

The second with block ensures that unlock is called regardless of any exceptions raised

	Return type:

	context manager

	Returns:

	When used in a with statement, niscope.Session.lock() acts as
a context manager and unlock will be called when the with block is exited

probe_compensation_signal_start

	
niscope.Session.probe_compensation_signal_start()

	Starts the 1 kHz square wave output on PFI 1 for probe compensation.

probe_compensation_signal_stop

	
niscope.Session.probe_compensation_signal_stop()

	Stops the 1 kHz square wave output on PFI 1 for probe compensation.

read

	
niscope.Session.read(num_samples=None, relative_to=niscope.FetchRelativeTo.PRETRIGGER, offset=0, record_number=0, num_records=None, timeout=hightime.timedelta(seconds=5.0))

	Initiates an acquisition, waits for it to complete, and retrieves the
data. The process is similar to calling niscope.Session._initiate_acquisition(),
niscope.Session.acquisition_status(), and niscope.Session.fetch(). The only difference is
that with niscope.Session.read(), you enable all channels specified with
channelList before the acquisition; in the other method, you enable
the channels with niscope.Session.configure_vertical().

This method may return multiple waveforms depending on the number of
channels, the acquisition type, and the number of records you specify.

Note

Some functionality, such as time stamping, is not supported in all digitizers.

Tip

This method can be called on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].read()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.read()

	Parameters:

	
	num_samples (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of samples to fetch for each waveform. If the acquisition finishes with fewer points than requested, some devices return partial data if the acquisition finished, was aborted, or a timeout of 0 was used. If it fails to complete within the timeout period, the method raises.

	relative_to (niscope.FetchRelativeTo) – Position to start fetching within one record.

	offset (int [https://docs.python.org/3/library/functions.html#int]) – Offset in samples to start fetching data within each record. The offset can be positive or negative.

	record_number (int [https://docs.python.org/3/library/functions.html#int]) – Zero-based index of the first record to fetch.

	num_records (int [https://docs.python.org/3/library/functions.html#int]) – Number of records to fetch. Use -1 to fetch all configured records.

	timeout (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – The time to wait for data to be acquired; using 0 for this parameter tells NI-SCOPE to fetch whatever is currently available. Using -1 seconds for this parameter implies infinite timeout.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of WaveformInfo

	Returns:

	Returns a list of class instances with the following timing and scaling information about each waveform:

	relative_initial_x (float) the time (in seconds) from the trigger to the first sample in the fetched waveform

	absolute_initial_x (float) timestamp (in seconds) of the first fetched sample. This timestamp is comparable between records and acquisitions; devices that do not support this parameter use 0 for this output.

	x_increment (float) the time between points in the acquired waveform in seconds

	channel (str) channel name this waveform was acquired from

	record (int) record number of this waveform

	gain (float) the gain factor of the given channel; useful for scaling binary data with the following formula:

\[voltage = binary data * gain factor + offset\]

	offset (float) the offset factor of the given channel; useful for scaling binary data with the following formula:

\[voltage = binary data * gain factor + offset\]

	samples (array of float) floating point array of samples. Length will be of the actual samples acquired

reset

	
niscope.Session.reset()

	Stops the acquisition, releases routes, and all session properties are
reset to their default
states.

reset_device

	
niscope.Session.reset_device()

	Performs a hard reset of the device. Acquisition stops, all routes are
released, RTSI and PFI lines are tristated, hardware is configured to
its default state, and all session properties are reset to their default
state.

	Thermal Shutdown

reset_with_defaults

	
niscope.Session.reset_with_defaults()

	Performs a software reset of the device, returning it to the default
state and applying any initial default settings from the IVI
Configuration Store.

self_cal

	
niscope.Session.self_cal(option=niscope.Option.SELF_CALIBRATE_ALL_CHANNELS)

	Self-calibrates most NI digitizers, including all SMC-based devices and
most Traditional NI-DAQ (Legacy) devices. To verify that your digitizer
supports self-calibration, refer to Features Supported by
Device.

For SMC-based digitizers, if the self-calibration is performed
successfully in a regular session, the calibration constants are
immediately stored in the self-calibration area of the EEPROM. If the
self-calibration is performed in an external calibration session, the
calibration constants take effect immediately for the duration of the
session. However, they are not stored in the EEPROM until
niscope.Session.CalEnd() is called with action set to
NISCOPE_VAL_ACTION_STORE and no errors occur.

Note

One or more of the referenced methods are not in the Python API for this driver.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

Tip

This method can be called on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].self_cal()

To call the method on all channels, you can call it directly on the niscope.Session.

Example: my_session.self_cal()

	Parameters:

	option (niscope.Option) – The calibration option. Use VI_NULL for a normal self-calibration
operation or NISCOPE_VAL_CAL_RESTORE_EXTERNAL_CALIBRATION to
restore the previous calibration.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

self_test

	
niscope.Session.self_test()

	Runs the instrument self-test routine and returns the test result(s). Refer to the
device-specific help topics for an explanation of the message contents.

Raises SelfTestError on self test failure. Properties on exception object:

	code - failure code from driver

	message - status message from driver

	Self-Test Code

	Description

	0

	Passed self-test

	1

	Self-test failed

send_software_trigger_edge

	
niscope.Session.send_software_trigger_edge(which_trigger)

	Sends the selected trigger to the digitizer. Call this method if you
called niscope.Session.configure_trigger_software() when you want the Reference
trigger to occur. You can also call this method to override a misused
edge, digital, or hysteresis trigger. If you have configured
niscope.Session.acq_arm_source, niscope.Session.arm_ref_trig_src, or
niscope.Session.adv_trig_src, call this method when you want to send
the corresponding trigger to the digitizer.

	Parameters:

	which_trigger (niscope.WhichTrigger) – Specifies the type of trigger to send to the digitizer.

Defined Values

START (0L)

ARM_REFERENCE (1L)

REFERENCE (2L)

ADVANCE (3L)

unlock

	
niscope.Session.unlock()

	Releases a lock that you acquired on an device session using
niscope.Session.lock(). Refer to niscope.Session.unlock() for additional
information on session locks.

Properties

absolute_sample_clock_offset

	
niscope.Session.absolute_sample_clock_offset

	Gets or sets the absolute time offset of the sample clock relative to
the reference clock in terms of seconds.

Note

Configures the sample clock relationship with respect to the reference
clock. This parameter is factored into NI-TClk adjustments and is
typically used to improve the repeatability of NI-TClk Synchronization.
When this parameter is read, the currently programmed value is returned.
The range of the absolute sample clock offset is [-.5 sample clock
periods, .5 sample clock periods]. The default absolute sample clock
offset is 0s.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Clocking:Advanced:Absolute Sample Clock Offset

	C Attribute: NISCOPE_ATTR_ABSOLUTE_SAMPLE_CLOCK_OFFSET

acquisition_start_time

	
niscope.Session.acquisition_start_time

	Specifies the length of time from the trigger event to the first point in the waveform record in seconds. If the value is positive, the first point in the waveform record occurs after the trigger event (same as specifying niscope.Session.trigger_delay_time). If the value is negative, the first point in the waveform record occurs before the trigger event (same as specifying niscope.Session.horz_record_ref_position).

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:Advanced:Acquisition Start Time

	C Attribute: NISCOPE_ATTR_ACQUISITION_START_TIME

acquisition_type

	
niscope.Session.acquisition_type

	Specifies how the digitizer acquires data and fills the waveform record.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.AcquisitionType

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Acquisition:Acquisition Type

	C Attribute: NISCOPE_ATTR_ACQUISITION_TYPE

acq_arm_source

	
niscope.Session.acq_arm_source

	Specifies the source the digitizer monitors for a start (acquisition arm) trigger. When the start trigger is received, the digitizer begins acquiring pretrigger samples.
Valid Values:
NISCOPE_VAL_IMMEDIATE (‘VAL_IMMEDIATE’) - Triggers immediately
NISCOPE_VAL_RTSI_0 (‘VAL_RTSI_0’) - RTSI 0
NISCOPE_VAL_RTSI_1 (‘VAL_RTSI_1’) - RTSI 1
NISCOPE_VAL_RTSI_2 (‘VAL_RTSI_2’) - RTSI 2
NISCOPE_VAL_RTSI_3 (‘VAL_RTSI_3’) - RTSI 3
NISCOPE_VAL_RTSI_4 (‘VAL_RTSI_4’) - RTSI 4
NISCOPE_VAL_RTSI_5 (‘VAL_RTSI_5’) - RTSI 5
NISCOPE_VAL_RTSI_6 (‘VAL_RTSI_6’) - RTSI 6
NISCOPE_VAL_PFI_0 (‘VAL_PFI_0’) - PFI 0
NISCOPE_VAL_PFI_1 (‘VAL_PFI_1’) - PFI 1
NISCOPE_VAL_PFI_2 (‘VAL_PFI_2’) - PFI 2
NISCOPE_VAL_PXI_STAR (‘VAL_PXI_STAR’) - PXI Star Trigger

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:Start Trigger (Acq. Arm):Source

	C Attribute: NISCOPE_ATTR_ACQ_ARM_SOURCE

advance_trigger_terminal_name

	
niscope.Session.advance_trigger_terminal_name

	Returns the fully qualified name for the Advance Trigger terminal. You can use this terminal as the source for another trigger.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:Advance Trigger:Terminal Name

	C Attribute: NISCOPE_ATTR_ADVANCE_TRIGGER_TERMINAL_NAME

adv_trig_src

	
niscope.Session.adv_trig_src

	Specifies the source the digitizer monitors for an advance trigger. When the advance trigger is received, the digitizer begins acquiring pretrigger samples.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:Advance Trigger:Source

	C Attribute: NISCOPE_ATTR_ADV_TRIG_SRC

allow_more_records_than_memory

	
niscope.Session.allow_more_records_than_memory

	Indicates whether more records can be configured with niscope.Session.configure_horizontal_timing() than fit in the onboard memory. If this property is set to True, it is necessary to fetch records while the acquisition is in progress. Eventually, some of the records will be overwritten. An error is returned from the fetch method if you attempt to fetch a record that has been overwritten.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:Enable Records > Memory

	C Attribute: NISCOPE_ATTR_ALLOW_MORE_RECORDS_THAN_MEMORY

arm_ref_trig_src

	
niscope.Session.arm_ref_trig_src

	Specifies the source the digitizer monitors for an arm reference trigger. When the arm reference trigger is received, the digitizer begins looking for a reference (stop) trigger from the user-configured trigger source.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:Arm Reference Trigger:Source

	C Attribute: NISCOPE_ATTR_ARM_REF_TRIG_SRC

backlog

	
niscope.Session.backlog

	Returns the number of samples (niscope.Session.points_done) that have been acquired but not fetched for the record specified by niscope.Session.fetch_record_number.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Fetch:Fetch Backlog

	C Attribute: NISCOPE_ATTR_BACKLOG

bandpass_filter_enabled

	
niscope.Session.bandpass_filter_enabled

	Enables the bandpass filter on the specificed channel. The default value is FALSE.

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].bandpass_filter_enabled

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.bandpass_filter_enabled

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Vertical:Advanced:Bandpass Filter Enabled

	C Attribute: NISCOPE_ATTR_BANDPASS_FILTER_ENABLED

binary_sample_width

	
niscope.Session.binary_sample_width

	Indicates the bit width of the binary data in the acquired waveform. Useful for determining which Binary Fetch method to use. Compare to niscope.Session.resolution.
To configure the device to store samples with a lower resolution that the native, set this property to the desired binary width.
This can be useful for streaming at faster speeds at the cost of resolution. The least significant bits will be lost with this configuration.
Valid Values: 8, 16, 32

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Acquisition:Binary Sample Width

	C Attribute: NISCOPE_ATTR_BINARY_SAMPLE_WIDTH

cable_sense_mode

	
niscope.Session.cable_sense_mode

	Specifies whether and how the oscilloscope is configured to generate a CableSense signal on the specified channels when the niscope.Session.CableSenseSignalStart() method is called.

	Device-Specific Behavior:
	
	PXIe-5160/5162
	
	The value of this property must be identical across all channels whose input impedance is set to 50 ohms.

	If this property is set to a value other than DISABLED for any channel(s), the input impedance of all channels for which this property is set to DISABLED must be set to 1 M Ohm.

	Supported Devices

	PXIe-5110

	PXIe-5111

	PXIe-5113

	PXIe-5160

	PXIe-5162

Note

the input impedance of the channel(s) to convey the CableSense signal must be set to 50 ohms.

Note

One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.CableSenseMode

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_CABLE_SENSE_MODE

cable_sense_signal_enable

	
niscope.Session.cable_sense_signal_enable

	TBD

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_CABLE_SENSE_SIGNAL_ENABLE

cable_sense_voltage

	
niscope.Session.cable_sense_voltage

	Returns the voltage of the CableSense signal that is written to the EEPROM of the oscilloscope during factory calibration.

	Supported Devices

	PXIe-5110

	PXIe-5111

	PXIe-5113

	PXIe-5160

	PXIe-5162

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_CABLE_SENSE_VOLTAGE

channel_count

	
niscope.Session.channel_count

	Indicates the number of channels that the specific instrument driver supports.
For channel-based properties, the IVI engine maintains a separate cache value for each channel.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Driver Capabilities:Channel Count

	C Attribute: NISCOPE_ATTR_CHANNEL_COUNT

channel_enabled

	
niscope.Session.channel_enabled

	Specifies whether the digitizer acquires a waveform for the channel.
Valid Values:
True (1) - Acquire data on this channel
False (0) - Don’t acquire data on this channel

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].channel_enabled

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.channel_enabled

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Vertical:Channel Enabled

	C Attribute: NISCOPE_ATTR_CHANNEL_ENABLED

channel_terminal_configuration

	
niscope.Session.channel_terminal_configuration

	Specifies the terminal configuration for the channel.

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].channel_terminal_configuration

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.channel_terminal_configuration

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TerminalConfiguration

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Vertical:Channel Terminal Configuration

	C Attribute: NISCOPE_ATTR_CHANNEL_TERMINAL_CONFIGURATION

data_transfer_block_size

	
niscope.Session.data_transfer_block_size

	Specifies the maximum number of samples to transfer at one time from the device to host memory. Increasing this number should result in better fetching performance because the driver does not need to restart the transfers as often. However, increasing this number may also increase the amount of page-locked memory required from the system.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Fetch:Data Transfer Block Size

	C Attribute: NISCOPE_ATTR_DATA_TRANSFER_BLOCK_SIZE

data_transfer_maximum_bandwidth

	
niscope.Session.data_transfer_maximum_bandwidth

	This property specifies the maximum bandwidth that the device is allowed to consume.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Fetch:Advanced:Maximum Bandwidth

	C Attribute: NISCOPE_ATTR_DATA_TRANSFER_MAXIMUM_BANDWIDTH

data_transfer_preferred_packet_size

	
niscope.Session.data_transfer_preferred_packet_size

	This property specifies the size of (read request|memory write) data payload. Due to alignment of the data buffers, the hardware may not always generate a packet of this size.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Fetch:Advanced:Preferred Packet Size

	C Attribute: NISCOPE_ATTR_DATA_TRANSFER_PREFERRED_PACKET_SIZE

device_temperature

	
niscope.Session.device_temperature

	Returns the temperature of the device in degrees Celsius from the onboard sensor.

Tip

This property can be set/get on specific instruments within your niscope.Session instance.
Use Python index notation on the repeated capabilities container instruments to specify a subset.

Example: my_session.instruments[...].device_temperature

To set/get on all instruments, you can call the property directly on the niscope.Session.

Example: my_session.device_temperature

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Repeated Capabilities

	instruments

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Device:Temperature

	C Attribute: NISCOPE_ATTR_DEVICE_TEMPERATURE

enabled_channels

	
niscope.Session.enabled_channels

	Returns a comma-separated list of the channels enabled for the session in ascending order.

If no channels are enabled, this property returns an empty string, “”.
If all channels are enabled, this property enumerates all of the channels.

Because this property returns channels in ascending order, but the order in which you specify channels for the input is important, the value of this property may not necessarily reflect the order in which NI-SCOPE performs certain actions.

Refer to Channel String Syntax in the NI High-Speed Digitizers Help for more information on the effects of channel order in NI-SCOPE.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_ENABLED_CHANNELS

enable_dc_restore

	
niscope.Session.enable_dc_restore

	Restores the video-triggered data retrieved by the digitizer to the video signal’s zero reference point.
Valid Values:
True - Enable DC restore
False - Disable DC restore

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Video:Enable DC Restore

	C Attribute: NISCOPE_ATTR_ENABLE_DC_RESTORE

enable_time_interleaved_sampling

	
niscope.Session.enable_time_interleaved_sampling

	Specifies whether the digitizer acquires the waveform using multiple ADCs for the channel enabling a higher maximum real-time sampling rate.
Valid Values:
True (1) - Use multiple interleaved ADCs on this channel
False (0) - Use only this channel’s ADC to acquire data for this channel

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].enable_time_interleaved_sampling

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.enable_time_interleaved_sampling

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:Enable Time Interleaved Sampling

	C Attribute: NISCOPE_ATTR_ENABLE_TIME_INTERLEAVED_SAMPLING

end_of_acquisition_event_output_terminal

	
niscope.Session.end_of_acquisition_event_output_terminal

	Specifies the destination for the End of Acquisition Event. When this event is asserted, the digitizer has completed sampling for all records.
Consult your device documentation for a specific list of valid destinations.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:End of Acquisition:Output Terminal

	C Attribute: NISCOPE_ATTR_END_OF_ACQUISITION_EVENT_OUTPUT_TERMINAL

end_of_acquisition_event_terminal_name

	
niscope.Session.end_of_acquisition_event_terminal_name

	Returns the fully qualified name for the End of Acquisition Event terminal. You can use this terminal as the source for a trigger.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:End of Acquisition:Terminal Name

	C Attribute: NISCOPE_ATTR_END_OF_ACQUISITION_EVENT_TERMINAL_NAME

end_of_record_event_output_terminal

	
niscope.Session.end_of_record_event_output_terminal

	Specifies the destination for the End of Record Event. When this event is asserted, the digitizer has completed sampling for the current record.
Consult your device documentation for a specific list of valid destinations.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:End of Record:Output Terminal

	C Attribute: NISCOPE_ATTR_END_OF_RECORD_EVENT_OUTPUT_TERMINAL

end_of_record_event_terminal_name

	
niscope.Session.end_of_record_event_terminal_name

	Returns the fully qualified name for the End of Record Event terminal. You can use this terminal as the source for a trigger.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:End of Record:Terminal Name

	C Attribute: NISCOPE_ATTR_END_OF_RECORD_EVENT_TERMINAL_NAME

end_of_record_to_advance_trigger_holdoff

	
niscope.Session.end_of_record_to_advance_trigger_holdoff

	End of Record to Advance Trigger Holdoff is the length of time (in
seconds) that a device waits between the completion of one record and
the acquisition of pre-trigger samples for the next record. During this
time, the acquisition engine state delays the transition to the Wait for
Advance Trigger state, and will not store samples in onboard memory,
accept an Advance Trigger, or trigger on the input signal..
Supported Devices: NI 5185/5186

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:End of Record to Advance Trigger Holdoff

	C Attribute: NISCOPE_ATTR_END_OF_RECORD_TO_ADVANCE_TRIGGER_HOLDOFF

equalization_filter_enabled

	
niscope.Session.equalization_filter_enabled

	Enables the onboard signal processing FIR block. This block is connected directly to the input signal. This filter is designed to compensate the input signal for artifacts introduced to the signal outside of the digitizer. However, since this is a generic FIR filter any coefficients are valid. Coefficients should be between +1 and -1 in value.

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].equalization_filter_enabled

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.equalization_filter_enabled

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Onboard Signal Processing:Equalization:Equalization Filter Enabled

	C Attribute: NISCOPE_ATTR_EQUALIZATION_FILTER_ENABLED

equalization_num_coefficients

	
niscope.Session.equalization_num_coefficients

	Returns the number of coefficients that the FIR filter can accept. This filter is designed to compensate the input signal for artifacts introduced to the signal outside of the digitizer. However, since this is a generic FIR filter any coefficients are valid. Coefficients should be between +1 and -1 in value.

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].equalization_num_coefficients

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.equalization_num_coefficients

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Onboard Signal Processing:Equalization:Equalization Num Coefficients

	C Attribute: NISCOPE_ATTR_EQUALIZATION_NUM_COEFFICIENTS

exported_advance_trigger_output_terminal

	
niscope.Session.exported_advance_trigger_output_terminal

	Specifies the destination to export the advance trigger. When the advance trigger is received, the digitizer begins acquiring samples for the Nth record.
Consult your device documentation for a specific list of valid destinations.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:Advance Trigger:Output Terminal

	C Attribute: NISCOPE_ATTR_EXPORTED_ADVANCE_TRIGGER_OUTPUT_TERMINAL

exported_ref_trigger_output_terminal

	
niscope.Session.exported_ref_trigger_output_terminal

	Specifies the destination export for the reference (stop) trigger.
Consult your device documentation for a specific list of valid destinations.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Output Terminal

	C Attribute: NISCOPE_ATTR_EXPORTED_REF_TRIGGER_OUTPUT_TERMINAL

exported_start_trigger_output_terminal

	
niscope.Session.exported_start_trigger_output_terminal

	Specifies the destination to export the Start trigger. When the start trigger is received, the digitizer begins acquiring samples.
Consult your device documentation for a specific list of valid destinations.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:Start Trigger (Acq. Arm):Output Terminal

	C Attribute: NISCOPE_ATTR_EXPORTED_START_TRIGGER_OUTPUT_TERMINAL

flex_fir_antialias_filter_type

	
niscope.Session.flex_fir_antialias_filter_type

	The NI 5922 flexible-resolution digitizer uses an onboard FIR lowpass antialias filter.
Use this property to select from several types of filters to achieve desired filtering characteristics.

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].flex_fir_antialias_filter_type

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.flex_fir_antialias_filter_type

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.FlexFIRAntialiasFilterType

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Vertical:Advanced:Flex FIR Antialias Filter Type

	C Attribute: NISCOPE_ATTR_FLEX_FIR_ANTIALIAS_FILTER_TYPE

fpga_bitfile_path

	
niscope.Session.fpga_bitfile_path

	Gets the absolute file path to the bitfile loaded on the FPGA.

Note

Gets the absolute file path to the bitfile loaded on the FPGA.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Device:FPGA Bitfile Path

	C Attribute: NISCOPE_ATTR_FPGA_BITFILE_PATH

glitch_condition

	
niscope.Session.glitch_condition

	Specifies whether the oscilloscope triggers on pulses of duration less than or greater than the value specified by the niscope.Session.glitch_width property.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.GlitchCondition

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_GLITCH_CONDITION

glitch_polarity

	
niscope.Session.glitch_polarity

	Specifies the polarity of pulses that trigger the oscilloscope for glitch triggering.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.GlitchPolarity

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_GLITCH_POLARITY

glitch_width

	
niscope.Session.glitch_width

	Specifies the glitch duration, in seconds.

The oscilloscope triggers when it detects of pulse of duration either less than or greater than this value depending on the value of the niscope.Session.glitch_condition property.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_GLITCH_WIDTH

high_pass_filter_frequency

	
niscope.Session.high_pass_filter_frequency

	Specifies the frequency for the highpass filter in Hz. The device uses
one of the valid values listed below. If an invalid value is specified,
no coercion occurs. The default value is 0.
(PXIe-5164) Valid Values:
0 90 450
Related topics:
Digital Filtering

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].high_pass_filter_frequency

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.high_pass_filter_frequency

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Vertical:Advanced:High Pass Filter Frequency

	C Attribute: NISCOPE_ATTR_HIGH_PASS_FILTER_FREQUENCY

horz_enforce_realtime

	
niscope.Session.horz_enforce_realtime

	Indicates whether the digitizer enforces real-time measurements or allows equivalent-time measurements.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:Enforce Realtime

	C Attribute: NISCOPE_ATTR_HORZ_ENFORCE_REALTIME

horz_min_num_pts

	
niscope.Session.horz_min_num_pts

	Specifies the minimum number of points you require in the waveform record for each channel. NI-SCOPE uses the value you specify to configure the record length that the digitizer uses for waveform acquisition. niscope.Session.horz_record_length returns the actual record length.
Valid Values: 1 - available onboard memory

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:Min Number of Points

	C Attribute: NISCOPE_ATTR_HORZ_MIN_NUM_PTS

horz_num_records

	
niscope.Session.horz_num_records

	Specifies the number of records to acquire. Can be used for multi-record acquisition and single-record acquisitions. Setting this to 1 indicates a single-record acquisition.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:Number of Records

	C Attribute: NISCOPE_ATTR_HORZ_NUM_RECORDS

horz_record_length

	
niscope.Session.horz_record_length

	Returns the actual number of points the digitizer acquires for each channel. The value is equal to or greater than the minimum number of points you specify with niscope.Session.horz_min_num_pts.
Allocate a ViReal64 array of this size or greater to pass as the WaveformArray parameter of the Read and Fetch methods. This property is only valid after a call to the one of the Configure Horizontal methods.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:Actual Record Length

	C Attribute: NISCOPE_ATTR_HORZ_RECORD_LENGTH

horz_record_ref_position

	
niscope.Session.horz_record_ref_position

	Specifies the position of the Reference Event in the waveform record. When the digitizer detects a trigger, it waits the length of time the niscope.Session.trigger_delay_time property specifies. The event that occurs when the delay time elapses is the Reference Event. The Reference Event is relative to the start of the record and is a percentage of the record length. For example, the value 50.0 corresponds to the center of the waveform record and 0.0 corresponds to the first element in the waveform record.
Valid Values: 0.0 - 100.0

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:Reference Position

	C Attribute: NISCOPE_ATTR_HORZ_RECORD_REF_POSITION

horz_sample_rate

	
niscope.Session.horz_sample_rate

	Returns the effective sample rate using the current configuration. The units are samples per second. This property is only valid after a call to the one of the Configure Horizontal methods.
Units: Hertz (Samples / Second)

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:Actual Sample Rate

	C Attribute: NISCOPE_ATTR_HORZ_SAMPLE_RATE

horz_time_per_record

	
niscope.Session.horz_time_per_record

	Specifies the length of time that corresponds to the record length.
Units: Seconds

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:Advanced:Time Per Record

	C Attribute: NISCOPE_ATTR_HORZ_TIME_PER_RECORD

input_clock_source

	
niscope.Session.input_clock_source

	Specifies the input source for the PLL reference clock (the 1 MHz to 20 MHz clock on the NI 5122, the 10 MHz clock for the NI 5112/5620/5621/5911) to which the digitizer will be phase-locked; for the NI 5102, this is the source of the board clock.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Clocking:Reference (Input) Clock Source

	C Attribute: NISCOPE_ATTR_INPUT_CLOCK_SOURCE

input_impedance

	
niscope.Session.input_impedance

	Specifies the input impedance for the channel in Ohms.

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].input_impedance

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.input_impedance

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Vertical:Input Impedance

	C Attribute: NISCOPE_ATTR_INPUT_IMPEDANCE

instrument_firmware_revision

	
niscope.Session.instrument_firmware_revision

	A string that contains the firmware revision information for the instrument you are currently using.

Tip

This property can be set/get on specific instruments within your niscope.Session instance.
Use Python index notation on the repeated capabilities container instruments to specify a subset.

Example: my_session.instruments[...].instrument_firmware_revision

To set/get on all instruments, you can call the property directly on the niscope.Session.

Example: my_session.instrument_firmware_revision

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	instruments

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Firmware Revision

	C Attribute: NISCOPE_ATTR_INSTRUMENT_FIRMWARE_REVISION

instrument_manufacturer

	
niscope.Session.instrument_manufacturer

	A string that contains the name of the instrument manufacturer.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Manufacturer

	C Attribute: NISCOPE_ATTR_INSTRUMENT_MANUFACTURER

instrument_model

	
niscope.Session.instrument_model

	A string that contains the model number of the current instrument.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Model

	C Attribute: NISCOPE_ATTR_INSTRUMENT_MODEL

interleaving_offset_correction_enabled

	
niscope.Session.interleaving_offset_correction_enabled

	Enables the interleaving offset correction on the specified channel. The
default value is TRUE.
Related topics:
Timed Interleaved
Sampling

Note

If disabled, warranted specifications are not guaranteed.

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].interleaving_offset_correction_enabled

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.interleaving_offset_correction_enabled

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Vertical:Advanced:Interleaving Offset Correction Enabled

	C Attribute: NISCOPE_ATTR_INTERLEAVING_OFFSET_CORRECTION_ENABLED

io_resource_descriptor

	
niscope.Session.io_resource_descriptor

	Indicates the resource descriptor the driver uses to identify the physical device. If you initialize the driver with a logical name, this property contains the resource descriptor that corresponds to the entry in the IVI Configuration utility.
If you initialize the instrument driver with the resource descriptor, this property contains that value.You can pass a logical name to niscope.Session.Init() or niscope.Session.__init__(). The IVI Configuration utility must contain an entry for the logical name. The logical name entry refers to a virtual instrument section in the IVI Configuration file. The virtual instrument section specifies a physical device and initial user options.

Note

One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Resource Descriptor

	C Attribute: NISCOPE_ATTR_IO_RESOURCE_DESCRIPTOR

is_probe_comp_on

	
niscope.Session.is_probe_comp_on

	
Tip

This property can be set/get on specific instruments within your niscope.Session instance.
Use Python index notation on the repeated capabilities container instruments to specify a subset.

Example: my_session.instruments[...].is_probe_comp_on

To set/get on all instruments, you can call the property directly on the niscope.Session.

Example: my_session.is_probe_comp_on

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read only

	Repeated Capabilities

	instruments

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_IS_PROBE_COMP_ON

logical_name

	
niscope.Session.logical_name

	A string containing the logical name you specified when opening the current IVI session. You can pass a logical name to niscope.Session.Init() or niscope.Session.__init__(). The IVI Configuration utility must contain an entry for the logical name. The logical name entry refers to a virtual instrument section in the IVI Configuration file. The virtual instrument section specifies a physical device and initial user options.

Note

One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Logical Name

	C Attribute: NISCOPE_ATTR_LOGICAL_NAME

master_enable

	
niscope.Session.master_enable

	Specifies whether you want the device to be a master or a slave. The master typically originates the trigger signal and clock sync pulse. For a standalone device, set this property to False.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:Master Enable

	C Attribute: NISCOPE_ATTR_MASTER_ENABLE

max_input_frequency

	
niscope.Session.max_input_frequency

	Specifies the bandwidth of the channel. Express this value as the frequency at which the input circuitry attenuates the input signal by 3 dB. The units are hertz.
Defined Values:
NISCOPE_VAL_BANDWIDTH_FULL (-1.0)
NISCOPE_VAL_BANDWIDTH_DEVICE_DEFAULT (0.0)
NISCOPE_VAL_20MHZ_BANDWIDTH (20000000.0)
NISCOPE_VAL_100MHZ_BANDWIDTH (100000000.0)
NISCOPE_VAL_20MHZ_MAX_INPUT_FREQUENCY (20000000.0)
NISCOPE_VAL_100MHZ_MAX_INPUT_FREQUENCY (100000000.0)

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].max_input_frequency

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.max_input_frequency

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Vertical:Maximum Input Frequency

	C Attribute: NISCOPE_ATTR_MAX_INPUT_FREQUENCY

max_real_time_sampling_rate

	
niscope.Session.max_real_time_sampling_rate

	Returns the maximum real time sample rate in Hz.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:Maximum Real Time Sample Rate

	C Attribute: NISCOPE_ATTR_MAX_REAL_TIME_SAMPLING_RATE

max_ris_rate

	
niscope.Session.max_ris_rate

	Returns the maximum sample rate in RIS mode in Hz.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:Maximum RIS Rate

	C Attribute: NISCOPE_ATTR_MAX_RIS_RATE

meas_array_gain

	
niscope.Session.meas_array_gain

	Every element of an array is multiplied by this scalar value during the Array Gain measurement. Refer to ARRAY_GAIN for more information.
Default: 1.0

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_array_gain

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_array_gain

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Measurement:Array Gain

	C Attribute: NISCOPE_ATTR_MEAS_ARRAY_GAIN

meas_array_offset

	
niscope.Session.meas_array_offset

	Every element of an array is added to this scalar value during the Array Offset measurement. Refer to ARRAY_OFFSET for more information.
Default: 0.0

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_array_offset

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_array_offset

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Measurement:Array Offset

	C Attribute: NISCOPE_ATTR_MEAS_ARRAY_OFFSET

meas_chan_high_ref_level

	
niscope.Session.meas_chan_high_ref_level

	Stores the high reference level used in many scalar measurements. Different channels may have different reference levels. Do not use the IVI-defined, nonchannel-based properties such as niscope.Session.meas_high_ref if you use this property to set various channels to different values.
Default: 90%

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_chan_high_ref_level

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_chan_high_ref_level

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Measurement:Reference Levels:Channel Based High Ref Level

	C Attribute: NISCOPE_ATTR_MEAS_CHAN_HIGH_REF_LEVEL

meas_chan_low_ref_level

	
niscope.Session.meas_chan_low_ref_level

	Stores the low reference level used in many scalar measurements. Different channels may have different reference levels. Do not use the IVI-defined, nonchannel-based properties such as niscope.Session.meas_low_ref if you use this property to set various channels to different values.
Default: 10%

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_chan_low_ref_level

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_chan_low_ref_level

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Measurement:Reference Levels:Channel Based Low Ref Level

	C Attribute: NISCOPE_ATTR_MEAS_CHAN_LOW_REF_LEVEL

meas_chan_mid_ref_level

	
niscope.Session.meas_chan_mid_ref_level

	Stores the mid reference level used in many scalar measurements. Different channels may have different reference levels. Do not use the IVI-defined, nonchannel-based properties such as niscope.Session.meas_mid_ref if you use this property to set various channels to different values.
Default: 50%

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_chan_mid_ref_level

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_chan_mid_ref_level

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Measurement:Reference Levels:Channel Based Mid Ref Level

	C Attribute: NISCOPE_ATTR_MEAS_CHAN_MID_REF_LEVEL

meas_filter_center_freq

	
niscope.Session.meas_filter_center_freq

	The center frequency in hertz for filters of type bandpass and bandstop. The width of the filter is specified by niscope.Session.meas_filter_width, where the cutoff frequencies are the center ± width.
Default: 1.0e6 Hz

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_filter_center_freq

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_filter_center_freq

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Measurement:Filter:Center Frequency

	C Attribute: NISCOPE_ATTR_MEAS_FILTER_CENTER_FREQ

meas_filter_cutoff_freq

	
niscope.Session.meas_filter_cutoff_freq

	Specifies the cutoff frequency in hertz for filters of type lowpass and highpass. The cutoff frequency definition varies depending on the filter.
Default: 1.0e6 Hz

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_filter_cutoff_freq

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_filter_cutoff_freq

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Measurement:Filter:Cutoff Frequency

	C Attribute: NISCOPE_ATTR_MEAS_FILTER_CUTOFF_FREQ

meas_filter_order

	
niscope.Session.meas_filter_order

	Specifies the order of an IIR filter. All positive integers are valid.
Default: 2

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_filter_order

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_filter_order

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Measurement:Filter:IIR Order

	C Attribute: NISCOPE_ATTR_MEAS_FILTER_ORDER

meas_filter_ripple

	
niscope.Session.meas_filter_ripple

	Specifies the amount of ripple in the passband in units of decibels (positive values). Used only for Chebyshev filters. The more ripple allowed gives a sharper cutoff for a given filter order.
Default: 0.1 dB

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_filter_ripple

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_filter_ripple

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Measurement:Filter:Ripple

	C Attribute: NISCOPE_ATTR_MEAS_FILTER_RIPPLE

meas_filter_taps

	
niscope.Session.meas_filter_taps

	Defines the number of taps (coefficients) for an FIR filter.
Default: 25

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_filter_taps

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_filter_taps

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Measurement:Filter:FIR Taps

	C Attribute: NISCOPE_ATTR_MEAS_FILTER_TAPS

meas_filter_transient_waveform_percent

	
niscope.Session.meas_filter_transient_waveform_percent

	The percentage (0 - 100%) of the IIR filtered waveform to eliminate from the beginning of the waveform. This allows eliminating the transient portion of the waveform that is undefined due to the assumptions necessary at the boundary condition.
Default: 20.0%

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_filter_transient_waveform_percent

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_filter_transient_waveform_percent

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Measurement:Filter:Percent Waveform Transient

	C Attribute: NISCOPE_ATTR_MEAS_FILTER_TRANSIENT_WAVEFORM_PERCENT

meas_filter_type

	
niscope.Session.meas_filter_type

	Specifies the type of filter, for both IIR and FIR filters. The allowed values are the following:
· NISCOPE_VAL_MEAS_LOWPASS
· NISCOPE_VAL_MEAS_HIGHPASS
· NISCOPE_VAL_MEAS_BANDPASS
· NISCOPE_VAL_MEAS_BANDSTOP
Default: NISCOPE_VAL_MEAS_LOWPASS

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_filter_type

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_filter_type

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.FilterType

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Measurement:Filter:Type

	C Attribute: NISCOPE_ATTR_MEAS_FILTER_TYPE

meas_filter_width

	
niscope.Session.meas_filter_width

	Specifies the width of bandpass and bandstop type filters in hertz. The cutoff frequencies occur at niscope.Session.meas_filter_center_freq ± one-half width.
Default: 1.0e3 Hz

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_filter_width

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_filter_width

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Measurement:Filter:Width

	C Attribute: NISCOPE_ATTR_MEAS_FILTER_WIDTH

meas_fir_filter_window

	
niscope.Session.meas_fir_filter_window

	Specifies the FIR window type. The possible choices are:
NONE
HANNING_WINDOW
HAMMING_WINDOW
TRIANGLE_WINDOW
FLAT_TOP_WINDOW
BLACKMAN_WINDOW
The symmetric windows are applied to the FIR filter coefficients to limit passband ripple in FIR filters.
Default: NONE

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_fir_filter_window

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_fir_filter_window

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.FIRFilterWindow

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Measurement:Filter:FIR Window

	C Attribute: NISCOPE_ATTR_MEAS_FIR_FILTER_WINDOW

meas_high_ref

	
niscope.Session.meas_high_ref

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_MEAS_HIGH_REF

meas_hysteresis_percent

	
niscope.Session.meas_hysteresis_percent

	Digital hysteresis that is used in several of the scalar waveform measurements. This property specifies the percentage of the full-scale vertical range for the hysteresis window size.
Default: 2%

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_hysteresis_percent

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_hysteresis_percent

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Measurement:Hysteresis Percent

	C Attribute: NISCOPE_ATTR_MEAS_HYSTERESIS_PERCENT

meas_interpolation_sampling_factor

	
niscope.Session.meas_interpolation_sampling_factor

	The new number of points for polynomial interpolation is the sampling factor times the input number of points. For example, if you acquire 1,000 points with the digitizer and set this property to 2.5, calling niscope.Session.FetchWaveformMeasurementArray() with the POLYNOMIAL_INTERPOLATION measurement resamples the waveform to 2,500 points.
Default: 2.0

Note

One or more of the referenced methods are not in the Python API for this driver.

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_interpolation_sampling_factor

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_interpolation_sampling_factor

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Measurement:Interpolation:Sampling Factor

	C Attribute: NISCOPE_ATTR_MEAS_INTERPOLATION_SAMPLING_FACTOR

meas_last_acq_histogram_size

	
niscope.Session.meas_last_acq_histogram_size

	Specifies the size (that is, the number of bins) in the last acquisition histogram. This histogram is used to determine several scalar measurements, most importantly voltage low and voltage high.
Default: 256

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_last_acq_histogram_size

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_last_acq_histogram_size

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Measurement:Last Acq. Histogram Size

	C Attribute: NISCOPE_ATTR_MEAS_LAST_ACQ_HISTOGRAM_SIZE

meas_low_ref

	
niscope.Session.meas_low_ref

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_MEAS_LOW_REF

meas_mid_ref

	
niscope.Session.meas_mid_ref

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_MEAS_MID_REF

meas_other_channel

	
niscope.Session.meas_other_channel

	Specifies the second channel for two-channel measurements, such as ADD_CHANNELS. If processing steps are registered with this channel, the processing is done before the waveform is used in a two-channel measurement.
Default: ‘0’

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_other_channel

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_other_channel

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str or int

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Measurement:Other Channel

	C Attribute: NISCOPE_ATTR_MEAS_OTHER_CHANNEL

meas_percentage_method

	
niscope.Session.meas_percentage_method

	Specifies the method used to map percentage reference units to voltages for the reference. Possible values are:
NISCOPE_VAL_MEAS_LOW_HIGH
NISCOPE_VAL_MEAS_MIN_MAX
NISCOPE_VAL_MEAS_BASE_TOP
Default: NISCOPE_VAL_MEAS_BASE_TOP

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_percentage_method

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_percentage_method

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.PercentageMethod

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Measurement:Reference Levels:Percentage Units Method

	C Attribute: NISCOPE_ATTR_MEAS_PERCENTAGE_METHOD

meas_polynomial_interpolation_order

	
niscope.Session.meas_polynomial_interpolation_order

	Specifies the polynomial order used for the polynomial interpolation measurement. For example, an order of 1 is linear interpolation whereas an order of 2 specifies parabolic interpolation. Any positive integer is valid.
Default: 1

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_polynomial_interpolation_order

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_polynomial_interpolation_order

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Measurement:Interpolation:Polynomial Interpolation Order

	C Attribute: NISCOPE_ATTR_MEAS_POLYNOMIAL_INTERPOLATION_ORDER

meas_ref_level_units

	
niscope.Session.meas_ref_level_units

	Specifies the units of the reference levels.
NISCOPE_VAL_MEAS_VOLTAGE–Specifies that the reference levels are given in units of volts
NISCOPE_VAL_MEAS_PERCENTAGE–Percentage units, where the measurements voltage low and voltage high represent 0% and 100%, respectively.
Default: NISCOPE_VAL_MEAS_PERCENTAGE

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_ref_level_units

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_ref_level_units

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.RefLevelUnits

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Measurement:Reference Levels:Units

	C Attribute: NISCOPE_ATTR_MEAS_REF_LEVEL_UNITS

meas_time_histogram_high_time

	
niscope.Session.meas_time_histogram_high_time

	Specifies the highest time value included in the multiple acquisition time histogram. The units are always seconds.
Default: 5.0e-4 seconds

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_time_histogram_high_time

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_time_histogram_high_time

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Measurement:Time Histogram:High Time

	C Attribute: NISCOPE_ATTR_MEAS_TIME_HISTOGRAM_HIGH_TIME

meas_time_histogram_high_volts

	
niscope.Session.meas_time_histogram_high_volts

	Specifies the highest voltage value included in the multiple-acquisition time histogram. The units are always volts.
Default: 10.0 V

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_time_histogram_high_volts

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_time_histogram_high_volts

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Measurement:Time Histogram:High Volts

	C Attribute: NISCOPE_ATTR_MEAS_TIME_HISTOGRAM_HIGH_VOLTS

meas_time_histogram_low_time

	
niscope.Session.meas_time_histogram_low_time

	Specifies the lowest time value included in the multiple-acquisition time histogram. The units are always seconds.
Default: -5.0e-4 seconds

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_time_histogram_low_time

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_time_histogram_low_time

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Measurement:Time Histogram:Low Time

	C Attribute: NISCOPE_ATTR_MEAS_TIME_HISTOGRAM_LOW_TIME

meas_time_histogram_low_volts

	
niscope.Session.meas_time_histogram_low_volts

	Specifies the lowest voltage value included in the multiple acquisition time histogram. The units are always volts.
Default: -10.0 V

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_time_histogram_low_volts

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_time_histogram_low_volts

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Measurement:Time Histogram:Low Volts

	C Attribute: NISCOPE_ATTR_MEAS_TIME_HISTOGRAM_LOW_VOLTS

meas_time_histogram_size

	
niscope.Session.meas_time_histogram_size

	Determines the multiple acquisition voltage histogram size. The size is set during the first call to a time histogram measurement after clearing the measurement history with niscope.Session.clear_waveform_measurement_stats().
Default: 256

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_time_histogram_size

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_time_histogram_size

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Measurement:Time Histogram:Size

	C Attribute: NISCOPE_ATTR_MEAS_TIME_HISTOGRAM_SIZE

meas_voltage_histogram_high_volts

	
niscope.Session.meas_voltage_histogram_high_volts

	Specifies the highest voltage value included in the multiple acquisition voltage histogram. The units are always volts.
Default: 10.0 V

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_voltage_histogram_high_volts

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_voltage_histogram_high_volts

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Measurement:Voltage Histogram:High Volts

	C Attribute: NISCOPE_ATTR_MEAS_VOLTAGE_HISTOGRAM_HIGH_VOLTS

meas_voltage_histogram_low_volts

	
niscope.Session.meas_voltage_histogram_low_volts

	Specifies the lowest voltage value included in the multiple-acquisition voltage histogram. The units are always volts.
Default: -10.0 V

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_voltage_histogram_low_volts

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_voltage_histogram_low_volts

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Measurement:Voltage Histogram:Low Volts

	C Attribute: NISCOPE_ATTR_MEAS_VOLTAGE_HISTOGRAM_LOW_VOLTS

meas_voltage_histogram_size

	
niscope.Session.meas_voltage_histogram_size

	Determines the multiple acquisition voltage histogram size. The size is set the first time a voltage histogram measurement is called after clearing the measurement history with the method niscope.Session.clear_waveform_measurement_stats().
Default: 256

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].meas_voltage_histogram_size

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.meas_voltage_histogram_size

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Waveform Measurement:Voltage Histogram:Size

	C Attribute: NISCOPE_ATTR_MEAS_VOLTAGE_HISTOGRAM_SIZE

min_sample_rate

	
niscope.Session.min_sample_rate

	Specify the sampling rate for the acquisition in Samples per second.
Valid Values:
The combination of sampling rate and min record length must allow the digitizer to sample at a valid sampling rate for the acquisition type specified in niscope.Session.ConfigureAcquisition() and not require more memory than the onboard memory module allows.

Note

One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:Min Sample Rate

	C Attribute: NISCOPE_ATTR_MIN_SAMPLE_RATE

onboard_memory_size

	
niscope.Session.onboard_memory_size

	Returns the total combined amount of onboard memory for all channels in bytes.

Tip

This property can be set/get on specific instruments within your niscope.Session instance.
Use Python index notation on the repeated capabilities container instruments to specify a subset.

Example: my_session.instruments[...].onboard_memory_size

To set/get on all instruments, you can call the property directly on the niscope.Session.

Example: my_session.onboard_memory_size

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Repeated Capabilities

	instruments

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:Memory Size

	C Attribute: NISCOPE_ATTR_ONBOARD_MEMORY_SIZE

output_clock_source

	
niscope.Session.output_clock_source

	Specifies the output source for the 10 MHz clock to which another digitizer’s sample clock can be phased-locked.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Clocking:Output Clock Source

	C Attribute: NISCOPE_ATTR_OUTPUT_CLOCK_SOURCE

pll_lock_status

	
niscope.Session.pll_lock_status

	If TRUE, the PLL has remained locked to the external reference clock since it was last checked. If FALSE, the PLL has become unlocked from the external reference clock since it was last checked.

Tip

This property can be set/get on specific instruments within your niscope.Session instance.
Use Python index notation on the repeated capabilities container instruments to specify a subset.

Example: my_session.instruments[...].pll_lock_status

To set/get on all instruments, you can call the property directly on the niscope.Session.

Example: my_session.pll_lock_status

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read only

	Repeated Capabilities

	instruments

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Clocking:PLL Lock Status

	C Attribute: NISCOPE_ATTR_PLL_LOCK_STATUS

points_done

	
niscope.Session.points_done

	Actual number of samples acquired in the record specified by niscope.Session.fetch_record_number from the niscope.Session.fetch_relative_to and niscope.Session.fetch_offset properties.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Fetch:Points Done

	C Attribute: NISCOPE_ATTR_POINTS_DONE

poll_interval

	
niscope.Session.poll_interval

	Specifies the poll interval in milliseconds to use during RIS acquisitions to check whether the acquisition is complete.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_POLL_INTERVAL

probe_attenuation

	
niscope.Session.probe_attenuation

	Specifies the probe attenuation for the input channel. For example, for a 10:1 probe, set this property to 10.0.
Valid Values:
Any positive real number. Typical values are 1, 10, and 100.

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].probe_attenuation

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.probe_attenuation

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Vertical:Probe Attenuation

	C Attribute: NISCOPE_ATTR_PROBE_ATTENUATION

ready_for_advance_event_output_terminal

	
niscope.Session.ready_for_advance_event_output_terminal

	Specifies the destination for the Ready for Advance Event. When this event is asserted, the digitizer is ready to receive an advance trigger.
Consult your device documentation for a specific list of valid destinations.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:Ready for Advance:Output Terminal

	C Attribute: NISCOPE_ATTR_READY_FOR_ADVANCE_EVENT_OUTPUT_TERMINAL

ready_for_advance_event_terminal_name

	
niscope.Session.ready_for_advance_event_terminal_name

	Returns the fully qualified name for the Ready for Advance Event terminal. You can use this terminal as the source for a trigger.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:Ready for Advance:Terminal Name

	C Attribute: NISCOPE_ATTR_READY_FOR_ADVANCE_EVENT_TERMINAL_NAME

ready_for_ref_event_output_terminal

	
niscope.Session.ready_for_ref_event_output_terminal

	Specifies the destination for the Ready for Reference Event. When this event is asserted, the digitizer is ready to receive a reference trigger.
Consult your device documentation for a specific list of valid destinations.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:Ready for Reference:Output Terminal

	C Attribute: NISCOPE_ATTR_READY_FOR_REF_EVENT_OUTPUT_TERMINAL

ready_for_ref_event_terminal_name

	
niscope.Session.ready_for_ref_event_terminal_name

	Returns the fully qualified name for the Ready for Reference Event terminal. You can use this terminal as the source for a trigger.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:Ready for Reference:Terminal Name

	C Attribute: NISCOPE_ATTR_READY_FOR_REF_EVENT_TERMINAL_NAME

ready_for_start_event_output_terminal

	
niscope.Session.ready_for_start_event_output_terminal

	Specifies the destination for the Ready for Start Event. When this event is asserted, the digitizer is ready to receive a start trigger.
Consult your device documentation for a specific list of valid destinations.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:Ready for Start:Output Terminal

	C Attribute: NISCOPE_ATTR_READY_FOR_START_EVENT_OUTPUT_TERMINAL

ready_for_start_event_terminal_name

	
niscope.Session.ready_for_start_event_terminal_name

	Returns the fully qualified name for the Ready for Start Event terminal. You can use this terminal as the source for a trigger.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:Ready for Start:Terminal Name

	C Attribute: NISCOPE_ATTR_READY_FOR_START_EVENT_TERMINAL_NAME

records_done

	
niscope.Session.records_done

	Specifies the number of records that have been completely acquired.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Fetch:Records Done

	C Attribute: NISCOPE_ATTR_RECORDS_DONE

record_arm_source

	
niscope.Session.record_arm_source

	Specifies the record arm source.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:Record Arm Source

	C Attribute: NISCOPE_ATTR_RECORD_ARM_SOURCE

ref_clk_rate

	
niscope.Session.ref_clk_rate

	If niscope.Session.input_clock_source is an external source, this property specifies the frequency of the input, or reference clock, to which the internal sample clock timebase is synchronized. The frequency is in hertz.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Clocking:Reference Clock Rate

	C Attribute: NISCOPE_ATTR_REF_CLK_RATE

ref_trigger_detector_location

	
niscope.Session.ref_trigger_detector_location

	Indicates which analog compare circuitry to use on the device.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.RefTriggerDetectorLocation

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Onboard Signal Processing:Ref Trigger Detection Location

	C Attribute: NISCOPE_ATTR_REF_TRIGGER_DETECTOR_LOCATION

ref_trigger_minimum_quiet_time

	
niscope.Session.ref_trigger_minimum_quiet_time

	The amount of time the trigger circuit must not detect a signal above the trigger level before the trigger is armed. This property is useful for triggering at the beginning and not in the middle of signal bursts.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Onboard Signal Processing:Ref Trigger Min Quiet Time

	C Attribute: NISCOPE_ATTR_REF_TRIGGER_MINIMUM_QUIET_TIME

ref_trigger_terminal_name

	
niscope.Session.ref_trigger_terminal_name

	Returns the fully qualified name for the Reference Trigger terminal. You can use this terminal as the source for another trigger.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Terminal Name

	C Attribute: NISCOPE_ATTR_REF_TRIGGER_TERMINAL_NAME

ref_trig_tdc_enable

	
niscope.Session.ref_trig_tdc_enable

	This property controls whether the TDC is used to compute an accurate trigger.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:Advanced:Enable TDC

	C Attribute: NISCOPE_ATTR_REF_TRIG_TDC_ENABLE

resolution

	
niscope.Session.resolution

	Indicates the bit width of valid data (as opposed to padding bits) in the acquired waveform. Compare to niscope.Session.binary_sample_width.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Acquisition:Resolution

	C Attribute: NISCOPE_ATTR_RESOLUTION

ris_in_auto_setup_enable

	
niscope.Session.ris_in_auto_setup_enable

	Indicates whether the digitizer should use RIS sample rates when searching for a frequency in autosetup.
Valid Values:
True (1) - Use RIS sample rates in autosetup
False (0) - Do not use RIS sample rates in autosetup

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Acquisition:Advanced:Enable RIS in Auto Setup

	C Attribute: NISCOPE_ATTR_RIS_IN_AUTO_SETUP_ENABLE

ris_method

	
niscope.Session.ris_method

	Specifies the algorithm for random-interleaved sampling, which is used if the sample rate exceeds the value of niscope.Session.max_real_time_sampling_rate.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.RISMethod

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:RIS Method

	C Attribute: NISCOPE_ATTR_RIS_METHOD

ris_num_averages

	
niscope.Session.ris_num_averages

	The number of averages for each bin in an RIS acquisition. The number of averages times the oversampling factor is the minimum number of real-time acquisitions necessary to reconstruct the RIS waveform. Averaging is useful in RIS because the trigger times are not evenly spaced, so adjacent points in the reconstructed waveform not be accurately spaced. By averaging, the errors in both time and voltage are smoothed.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Horizontal:RIS Num Avg

	C Attribute: NISCOPE_ATTR_RIS_NUM_AVERAGES

runt_high_threshold

	
niscope.Session.runt_high_threshold

	Specifies the higher of two thresholds, in volts, that bound the vertical range to examine for runt pulses.

The runt threshold that causes the oscilloscope to trigger depends on the runt polarity you select. Refer to the niscope.Session.runt_polarity property for more information.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_RUNT_HIGH_THRESHOLD

runt_low_threshold

	
niscope.Session.runt_low_threshold

	Specifies the lower of two thresholds, in volts, that bound the vertical range to examine for runt pulses.

The runt threshold that causes the oscilloscope to trigger depends on the runt polarity you select. Refer to the niscope.Session.runt_polarity property for more information.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_RUNT_LOW_THRESHOLD

runt_polarity

	
niscope.Session.runt_polarity

	Specifies the polarity of pulses that trigger the oscilloscope for runt triggering.

	When set to POSITIVE, the oscilloscope triggers when the following conditions are met:
	
	The leading edge of a pulse crosses the niscope.Session.runt_low_threshold in a positive direction;

	The trailing edge of the pulse crosses the niscope.Session.runt_low_threshold in a negative direction; and

	No portion of the pulse crosses the niscope.Session.runt_high_threshold.

	When set to NEGATIVE, the oscilloscope triggers when the following conditions are met:
	
	The leading edge of a pulse crosses the niscope.Session.runt_high_threshold in a negative direction;

	The trailing edge of the pulse crosses the niscope.Session.runt_high_threshold in a positive direction; and

	No portion of the pulse crosses the niscope.Session.runt_low_threshold.

When set to EITHER, the oscilloscope triggers in either case.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.RuntPolarity

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_RUNT_POLARITY

runt_time_condition

	
niscope.Session.runt_time_condition

	Specifies whether runt triggers are time qualified, and if so, how the oscilloscope triggers in relation to the duration range bounded by the niscope.Session.runt_time_low_limit and niscope.Session.runt_time_high_limit properties.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.RuntTimeCondition

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_RUNT_TIME_CONDITION

runt_time_high_limit

	
niscope.Session.runt_time_high_limit

	Specifies, in seconds, the high runt threshold time.

This property sets the upper bound on the duration of runt pulses that may trigger the oscilloscope. The niscope.Session.runt_time_condition property determines how the oscilloscope triggers in relation to the runt time limits.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_RUNT_TIME_HIGH_LIMIT

runt_time_low_limit

	
niscope.Session.runt_time_low_limit

	Specifies, in seconds, the low runt threshold time.

This property sets the lower bound on the duration of runt pulses that may trigger the oscilloscope. The niscope.Session.runt_time_condition property determines how the oscilloscope triggers in relation to the runt time limits.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_RUNT_TIME_LOW_LIMIT

sample_mode

	
niscope.Session.sample_mode

	Indicates the sample mode the digitizer is currently using.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Acquisition:Sample Mode

	C Attribute: NISCOPE_ATTR_SAMPLE_MODE

samp_clk_timebase_div

	
niscope.Session.samp_clk_timebase_div

	If niscope.Session.samp_clk_timebase_src is an external source, specifies the ratio between the sample clock timebase rate and the actual sample rate, which can be slower.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Clocking:Sample Clock Timebase Divisor

	C Attribute: NISCOPE_ATTR_SAMP_CLK_TIMEBASE_DIV

sample_clock_timebase_multiplier

	
niscope.Session.sample_clock_timebase_multiplier

	If niscope.Session.samp_clk_timebase_src is an external source, this property specifies the ratio between the niscope.Session.samp_clk_timebase_rate and the actual sample rate, which can be higher. This property can be used in conjunction with niscope.Session.samp_clk_timebase_div.
Some devices use multiple ADCs to sample the same channel at an effective sample rate that is greater than the specified clock rate. When providing an external sample clock use this property to indicate when you want a higher sample rate. Valid values for this property vary by device and current configuration.

Related topics:
Sample Clock

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_SAMP_CLK_TIMEBASE_MULT

samp_clk_timebase_rate

	
niscope.Session.samp_clk_timebase_rate

	If niscope.Session.samp_clk_timebase_src is an external source, specifies the frequency in hertz of the external clock used as the timebase source.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Clocking:Sample Clock Timebase Rate

	C Attribute: NISCOPE_ATTR_SAMP_CLK_TIMEBASE_RATE

samp_clk_timebase_src

	
niscope.Session.samp_clk_timebase_src

	Specifies the source of the sample clock timebase, which is the timebase used to control waveform sampling. The actual sample rate may be the timebase itself or a divided version of the timebase, depending on the niscope.Session.min_sample_rate (for internal sources) or the niscope.Session.samp_clk_timebase_div (for external sources).

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Clocking:Sample Clock Timebase Source

	C Attribute: NISCOPE_ATTR_SAMP_CLK_TIMEBASE_SRC

serial_number

	
niscope.Session.serial_number

	Returns the serial number of the device.

Tip

This property can be set/get on specific instruments within your niscope.Session instance.
Use Python index notation on the repeated capabilities container instruments to specify a subset.

Example: my_session.instruments[...].serial_number

To set/get on all instruments, you can call the property directly on the niscope.Session.

Example: my_session.serial_number

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	instruments

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Device:Serial Number

	C Attribute: NISCOPE_ATTR_SERIAL_NUMBER

accessory_gain

	
niscope.Session.accessory_gain

	Returns the calibration gain for the current device configuration.

Related topics:
NI 5122/5124/5142 Calibration

Note

This property is supported only by the NI PXI-5900 differential amplifier.

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].accessory_gain

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.accessory_gain

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_SIGNAL_COND_GAIN

accessory_offset

	
niscope.Session.accessory_offset

	Returns the calibration offset for the current device configuration.

Related topics:
NI 5122/5124/5142 Calibration

Note

This property is supported only by the NI PXI-5900 differential amplifier.

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].accessory_offset

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.accessory_offset

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_SIGNAL_COND_OFFSET

simulate

	
niscope.Session.simulate

	Specifies whether or not to simulate instrument driver I/O operations. If simulation is enabled, instrument driver methods perform range checking and call Ivi_GetAttribute and Ivi_SetAttribute methods, but they do not perform instrument I/O. For output parameters that represent instrument data, the instrument driver methods return calculated values.
The default value is False. Use the niscope.Session.__init__() method to override this value.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:User Options:Simulate

	C Attribute: NISCOPE_ATTR_SIMULATE

specific_driver_description

	
niscope.Session.specific_driver_description

	A string that contains a brief description of the specific driver

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Driver Identification:Description

	C Attribute: NISCOPE_ATTR_SPECIFIC_DRIVER_DESCRIPTION

specific_driver_revision

	
niscope.Session.specific_driver_revision

	A string that contains additional version information about this instrument driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Driver Identification:Revision

	C Attribute: NISCOPE_ATTR_SPECIFIC_DRIVER_REVISION

specific_driver_vendor

	
niscope.Session.specific_driver_vendor

	A string that contains the name of the vendor that supplies this driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Driver Identification:Driver Vendor

	C Attribute: NISCOPE_ATTR_SPECIFIC_DRIVER_VENDOR

start_to_ref_trigger_holdoff

	
niscope.Session.start_to_ref_trigger_holdoff

	Pass the length of time you want the digitizer to wait after it starts acquiring data until the digitizer enables the trigger system to detect a reference (stop) trigger.
Units: Seconds
Valid Values: 0.0 - 171.8

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Start To Ref Trigger Holdoff

	C Attribute: NISCOPE_ATTR_START_TO_REF_TRIGGER_HOLDOFF

start_trigger_terminal_name

	
niscope.Session.start_trigger_terminal_name

	Returns the fully qualified name for the Start Trigger terminal. You can use this terminal as the source for another trigger.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Synchronization:Start Trigger (Acq. Arm):Terminal Name

	C Attribute: NISCOPE_ATTR_START_TRIGGER_TERMINAL_NAME

supported_instrument_models

	
niscope.Session.supported_instrument_models

	A string that contains a comma-separated list of the instrument model numbers supported by this driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Driver Capabilities:Supported Instrument Models

	C Attribute: NISCOPE_ATTR_SUPPORTED_INSTRUMENT_MODELS

trigger_auto_triggered

	
niscope.Session.trigger_auto_triggered

	Specifies if the last acquisition was auto triggered. You can use the Auto Triggered property to find out if the last acquisition was triggered.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Auto Triggered

	C Attribute: NISCOPE_ATTR_TRIGGER_AUTO_TRIGGERED

trigger_coupling

	
niscope.Session.trigger_coupling

	Specifies how the digitizer couples the trigger source. This property affects instrument operation only when niscope.Session.trigger_type is set to EDGE, HYSTERESIS, or WINDOW.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TriggerCoupling

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Coupling

	C Attribute: NISCOPE_ATTR_TRIGGER_COUPLING

trigger_delay_time

	
niscope.Session.trigger_delay_time

	Specifies the trigger delay time in seconds. The trigger delay time is the length of time the digitizer waits after it receives the trigger. The event that occurs when the trigger delay elapses is the Reference Event.
Valid Values: 0.0 - 171.8

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Delay

	C Attribute: NISCOPE_ATTR_TRIGGER_DELAY_TIME

trigger_holdoff

	
niscope.Session.trigger_holdoff

	Specifies the length of time (in seconds) the digitizer waits after detecting a trigger before enabling the trigger subsystem to detect another trigger. This property affects instrument operation only when the digitizer requires multiple acquisitions to build a complete waveform. The digitizer requires multiple waveform acquisitions when it uses equivalent-time sampling or when the digitizer is configured for a multi-record acquisition through a call to niscope.Session.configure_horizontal_timing().
Valid Values: 0.0 - 171.8

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Holdoff

	C Attribute: NISCOPE_ATTR_TRIGGER_HOLDOFF

trigger_hysteresis

	
niscope.Session.trigger_hysteresis

	Specifies the size of the hysteresis window on either side of the trigger level. The digitizer triggers when the trigger signal passes through the threshold you specify with the Trigger Level parameter, has the slope you specify with the Trigger Slope parameter, and passes through the hysteresis window that you specify with this parameter.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Hysteresis

	C Attribute: NISCOPE_ATTR_TRIGGER_HYSTERESIS

trigger_impedance

	
niscope.Session.trigger_impedance

	Specifies the input impedance for the external analog trigger channel in Ohms.
Valid Values:
50 - 50 ohms
1000000 - 1 mega ohm

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Impedance

	C Attribute: NISCOPE_ATTR_TRIGGER_IMPEDANCE

trigger_level

	
niscope.Session.trigger_level

	Specifies the voltage threshold for the trigger subsystem. The units are volts. This property affects instrument behavior only when the niscope.Session.trigger_type is set to EDGE, HYSTERESIS, or WINDOW.
Valid Values:
The values of the range and offset parameters in niscope.Session.configure_vertical() determine the valid range for the trigger level on the channel you use as the Trigger Source. The value you pass for this parameter must meet the following conditions:

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Level

	C Attribute: NISCOPE_ATTR_TRIGGER_LEVEL

trigger_modifier

	
niscope.Session.trigger_modifier

	Configures the device to automatically complete an acquisition if a trigger has not been received.
Valid Values:
None (1) - Normal triggering
Auto Trigger (2) - Auto trigger acquisition if no trigger arrives

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TriggerModifier

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Modifier

	C Attribute: NISCOPE_ATTR_TRIGGER_MODIFIER

trigger_slope

	
niscope.Session.trigger_slope

	Specifies if a rising or a falling edge triggers the digitizer. This property affects instrument operation only when niscope.Session.trigger_type is set to EDGE, HYSTERESIS, or WINDOW.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TriggerSlope

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Slope

	C Attribute: NISCOPE_ATTR_TRIGGER_SLOPE

trigger_source

	
niscope.Session.trigger_source

	Specifies the source the digitizer monitors for the trigger event.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Source

	C Attribute: NISCOPE_ATTR_TRIGGER_SOURCE

trigger_type

	
niscope.Session.trigger_type

	Specifies the type of trigger to use.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TriggerType

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Type

	C Attribute: NISCOPE_ATTR_TRIGGER_TYPE

trigger_window_high_level

	
niscope.Session.trigger_window_high_level

	Pass the upper voltage threshold you want the digitizer to use for window triggering.
The digitizer triggers when the trigger signal enters or leaves the window you specify with niscope.Session.trigger_window_low_level and niscope.Session.trigger_window_high_level
Valid Values:
The values of the Vertical Range and Vertical Offset parameters in niscope.Session.configure_vertical() determine the valid range for the High Window Level on the channel you use as the Trigger Source parameter in niscope.Session.ConfigureTriggerSource(). The value you pass for this parameter must meet the following conditions.
High Trigger Level <= Vertical Range/2 + Vertical Offset
High Trigger Level >= (-Vertical Range/2) + Vertical Offset
High Trigger Level > Low Trigger Level

Note

One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Window:High Level

	C Attribute: NISCOPE_ATTR_TRIGGER_WINDOW_HIGH_LEVEL

trigger_window_low_level

	
niscope.Session.trigger_window_low_level

	Pass the lower voltage threshold you want the digitizer to use for window triggering.
The digitizer triggers when the trigger signal enters or leaves the window you specify with niscope.Session.trigger_window_low_level and niscope.Session.trigger_window_high_level.
Units: Volts
Valid Values:
The values of the Vertical Range and Vertical Offset parameters in niscope.Session.configure_vertical() determine the valid range for the Low Window Level on the channel you use as the Trigger Source parameter in niscope.Session.ConfigureTriggerSource(). The value you pass for this parameter must meet the following conditions.
Low Trigger Level <= Vertical Range/2 + Vertical Offset
Low Trigger Level >= (-Vertical Range/2) + Vertical Offset
Low Trigger Level < High Trigger Level

Note

One or more of the referenced methods are not in the Python API for this driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Window:Low Level

	C Attribute: NISCOPE_ATTR_TRIGGER_WINDOW_LOW_LEVEL

trigger_window_mode

	
niscope.Session.trigger_window_mode

	Specifies whether you want a trigger to occur when the signal enters or leaves the window specified by niscope.Session.trigger_window_low_level, or niscope.Session.trigger_window_high_level.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TriggerWindowMode

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Window:Window Mode

	C Attribute: NISCOPE_ATTR_TRIGGER_WINDOW_MODE

tv_trigger_event

	
niscope.Session.tv_trigger_event

	Specifies the condition in the video signal that causes the digitizer to trigger.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.VideoTriggerEvent

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Video:Event

	C Attribute: NISCOPE_ATTR_TV_TRIGGER_EVENT

tv_trigger_line_number

	
niscope.Session.tv_trigger_line_number

	Specifies the line on which to trigger, if niscope.Session.tv_trigger_event is set to line number. The valid ranges of the property depend on the signal format selected. M-NTSC has a valid range of 1 to 525. B/G-PAL, SECAM, 576i, and 576p have a valid range of 1 to 625. 720p has a valid range of 1 to 750. 1080i and 1080p have a valid range of 1125.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Video:Line Number

	C Attribute: NISCOPE_ATTR_TV_TRIGGER_LINE_NUMBER

tv_trigger_polarity

	
niscope.Session.tv_trigger_polarity

	Specifies whether the video signal sync is positive or negative.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.VideoPolarity

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Video:Polarity

	C Attribute: NISCOPE_ATTR_TV_TRIGGER_POLARITY

tv_trigger_signal_format

	
niscope.Session.tv_trigger_signal_format

	Specifies the type of video signal, such as NTSC, PAL, or SECAM.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.VideoSignalFormat

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggering:Trigger Video:Signal Format

	C Attribute: NISCOPE_ATTR_TV_TRIGGER_SIGNAL_FORMAT

use_spec_initial_x

	
niscope.Session.use_spec_initial_x

	The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_USE_SPEC_INITIAL_X

vertical_coupling

	
niscope.Session.vertical_coupling

	Specifies how the digitizer couples the input signal for the channel. When input coupling changes, the input stage takes a finite amount of time to settle.

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].vertical_coupling

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.vertical_coupling

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.VerticalCoupling

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Vertical:Vertical Coupling

	C Attribute: NISCOPE_ATTR_VERTICAL_COUPLING

vertical_offset

	
niscope.Session.vertical_offset

	Specifies the location of the center of the range. The value is with respect to ground and is in volts. For example, to acquire a sine wave that spans between 0.0 and 10.0 V, set this property to 5.0 V.

Note

This property is not supported by all digitizers.Refer to the NI High-Speed Digitizers Help for a list of vertical offsets supported for each device.

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].vertical_offset

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.vertical_offset

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Vertical:Vertical Offset

	C Attribute: NISCOPE_ATTR_VERTICAL_OFFSET

vertical_range

	
niscope.Session.vertical_range

	Specifies the absolute value of the input range for a channel in volts. For example, to acquire a sine wave that spans between -5 and +5 V, set this property to 10.0 V.
Refer to the NI High-Speed Digitizers Help for a list of supported vertical ranges for each device. If the specified range is not supported by a device, the value is coerced up to the next valid range.

Tip

This property can be set/get on specific channels within your niscope.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].vertical_range

To set/get on all channels, you can call the property directly on the niscope.Session.

Example: my_session.vertical_range

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Vertical:Vertical Range

	C Attribute: NISCOPE_ATTR_VERTICAL_RANGE

width_condition

	
niscope.Session.width_condition

	Specifies whether the oscilloscope triggers on pulses within or outside the duration range bounded by the niscope.Session.width_low_threshold and niscope.Session.width_high_threshold properties.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.WidthCondition

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_WIDTH_CONDITION

width_high_threshold

	
niscope.Session.width_high_threshold

	Specifies the high width threshold, in seconds.

This properties sets the upper bound on the duration range that triggers the oscilloscope. The niscope.Session.width_condition property determines how the oscilloscope triggers in relation to the width thresholds.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_WIDTH_HIGH_THRESHOLD

width_low_threshold

	
niscope.Session.width_low_threshold

	Specifies the low width threshold, in seconds.

This property sets the lower bound on the duration range that triggers the oscilloscope. The niscope.Session.width_condition property determines how the oscilloscope triggers in relation to the width thresholds.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_WIDTH_LOW_THRESHOLD

width_polarity

	
niscope.Session.width_polarity

	Specifies the polarity of pulses that trigger the oscilloscope for width triggering.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.WidthPolarity

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NISCOPE_ATTR_WIDTH_POLARITY

NI-TClk Support

	
niscope.Session.tclk

	This is used to get and set NI-TClk attributes on the session.

See also

See nitclk.SessionReference [https://nitclk.readthedocs.io/en/latest/class.html#nitclk.SessionReference] for a complete list of attributes.

Session

	Session

	Methods

	abort

	acquisition_status

	add_waveform_processing

	auto_setup

	clear_waveform_measurement_stats

	clear_waveform_processing

	close

	commit

	configure_chan_characteristics

	configure_equalization_filter_coefficients

	configure_horizontal_timing

	configure_trigger_digital

	configure_trigger_edge

	configure_trigger_hysteresis

	configure_trigger_immediate

	configure_trigger_software

	configure_trigger_video

	configure_trigger_window

	configure_vertical

	disable

	export_attribute_configuration_buffer

	export_attribute_configuration_file

	fetch

	fetch_array_measurement

	fetch_into

	fetch_measurement_stats

	get_channel_names

	get_equalization_filter_coefficients

	get_ext_cal_last_date_and_time

	get_ext_cal_last_temp

	get_self_cal_last_date_and_time

	get_self_cal_last_temp

	import_attribute_configuration_buffer

	import_attribute_configuration_file

	initiate

	lock

	probe_compensation_signal_start

	probe_compensation_signal_stop

	read

	reset

	reset_device

	reset_with_defaults

	self_cal

	self_test

	send_software_trigger_edge

	unlock

	Properties

	absolute_sample_clock_offset

	acquisition_start_time

	acquisition_type

	acq_arm_source

	advance_trigger_terminal_name

	adv_trig_src

	allow_more_records_than_memory

	arm_ref_trig_src

	backlog

	bandpass_filter_enabled

	binary_sample_width

	cable_sense_mode

	cable_sense_signal_enable

	cable_sense_voltage

	channel_count

	channel_enabled

	channel_terminal_configuration

	data_transfer_block_size

	data_transfer_maximum_bandwidth

	data_transfer_preferred_packet_size

	device_temperature

	enabled_channels

	enable_dc_restore

	enable_time_interleaved_sampling

	end_of_acquisition_event_output_terminal

	end_of_acquisition_event_terminal_name

	end_of_record_event_output_terminal

	end_of_record_event_terminal_name

	end_of_record_to_advance_trigger_holdoff

	equalization_filter_enabled

	equalization_num_coefficients

	exported_advance_trigger_output_terminal

	exported_ref_trigger_output_terminal

	exported_start_trigger_output_terminal

	flex_fir_antialias_filter_type

	fpga_bitfile_path

	glitch_condition

	glitch_polarity

	glitch_width

	high_pass_filter_frequency

	horz_enforce_realtime

	horz_min_num_pts

	horz_num_records

	horz_record_length

	horz_record_ref_position

	horz_sample_rate

	horz_time_per_record

	input_clock_source

	input_impedance

	instrument_firmware_revision

	instrument_manufacturer

	instrument_model

	interleaving_offset_correction_enabled

	io_resource_descriptor

	is_probe_comp_on

	logical_name

	master_enable

	max_input_frequency

	max_real_time_sampling_rate

	max_ris_rate

	meas_array_gain

	meas_array_offset

	meas_chan_high_ref_level

	meas_chan_low_ref_level

	meas_chan_mid_ref_level

	meas_filter_center_freq

	meas_filter_cutoff_freq

	meas_filter_order

	meas_filter_ripple

	meas_filter_taps

	meas_filter_transient_waveform_percent

	meas_filter_type

	meas_filter_width

	meas_fir_filter_window

	meas_high_ref

	meas_hysteresis_percent

	meas_interpolation_sampling_factor

	meas_last_acq_histogram_size

	meas_low_ref

	meas_mid_ref

	meas_other_channel

	meas_percentage_method

	meas_polynomial_interpolation_order

	meas_ref_level_units

	meas_time_histogram_high_time

	meas_time_histogram_high_volts

	meas_time_histogram_low_time

	meas_time_histogram_low_volts

	meas_time_histogram_size

	meas_voltage_histogram_high_volts

	meas_voltage_histogram_low_volts

	meas_voltage_histogram_size

	min_sample_rate

	onboard_memory_size

	output_clock_source

	pll_lock_status

	points_done

	poll_interval

	probe_attenuation

	ready_for_advance_event_output_terminal

	ready_for_advance_event_terminal_name

	ready_for_ref_event_output_terminal

	ready_for_ref_event_terminal_name

	ready_for_start_event_output_terminal

	ready_for_start_event_terminal_name

	records_done

	record_arm_source

	ref_clk_rate

	ref_trigger_detector_location

	ref_trigger_minimum_quiet_time

	ref_trigger_terminal_name

	ref_trig_tdc_enable

	resolution

	ris_in_auto_setup_enable

	ris_method

	ris_num_averages

	runt_high_threshold

	runt_low_threshold

	runt_polarity

	runt_time_condition

	runt_time_high_limit

	runt_time_low_limit

	sample_mode

	samp_clk_timebase_div

	sample_clock_timebase_multiplier

	samp_clk_timebase_rate

	samp_clk_timebase_src

	serial_number

	accessory_gain

	accessory_offset

	simulate

	specific_driver_description

	specific_driver_revision

	specific_driver_vendor

	start_to_ref_trigger_holdoff

	start_trigger_terminal_name

	supported_instrument_models

	trigger_auto_triggered

	trigger_coupling

	trigger_delay_time

	trigger_holdoff

	trigger_hysteresis

	trigger_impedance

	trigger_level

	trigger_modifier

	trigger_slope

	trigger_source

	trigger_type

	trigger_window_high_level

	trigger_window_low_level

	trigger_window_mode

	tv_trigger_event

	tv_trigger_line_number

	tv_trigger_polarity

	tv_trigger_signal_format

	use_spec_initial_x

	vertical_coupling

	vertical_offset

	vertical_range

	width_condition

	width_high_threshold

	width_low_threshold

	width_polarity

	NI-TClk Support

Repeated Capabilities

Repeated capabilities attributes are used to set the channel_string parameter to the
underlying driver function call. This can be the actual function based on the Session
method being called, or it can be the appropriate Get/Set Attribute function, such as niScope_SetAttributeViInt32().

Repeated capabilities attributes use the indexing operator [] to indicate the repeated capabilities.
The parameter can be a string, list, tuple, or slice (range). Each element of those can be a string or
an integer. If it is a string, you can indicate a range using the same format as the driver: '0-2' or
'0:2'

Some repeated capabilities use a prefix before the number and this is optional

channels

	
niscope.Session.channels

	session.channels['0-2'].channel_enabled = True

passes a string of '0, 1, 2' to the set attribute function.

instruments

	
niscope.Session.instruments

	session.instruments['0-2'].channel_enabled = True

passes a string of '0, 1, 2' to the set attribute function.

Enums

Enums used in NI-SCOPE

AcquisitionStatus

	
class niscope.AcquisitionStatus

	
	
COMPLETE

	

	
IN_PROGRESS

	

	
STATUS_UNKNOWN

	

AcquisitionType

	
class niscope.AcquisitionType

	
	
NORMAL

	Sets the digitizer to normal resolution mode. The digitizer can use real-time sampling or equivalent-time sampling.

	
FLEXRES

	Sets the digitizer to flexible resolution mode if supported. The digitizer uses different hardware configurations to change the resolution depending on the sampling rate used.

	
DDC

	Sets the digitizer to DDC mode on the NI 5620/5621.

ArrayMeasurement

	
class niscope.ArrayMeasurement

	
	
NO_MEASUREMENT

	None

	
LAST_ACQ_HISTOGRAM

	Last Acquisition Histogram

	
FFT_PHASE_SPECTRUM

	FFT Phase Spectrum

	
FFT_AMP_SPECTRUM_VOLTS_RMS

	FFT Amp. Spectrum (Volts RMS)

	
MULTI_ACQ_VOLTAGE_HISTOGRAM

	Multi Acquisition Voltage Histogram

	
MULTI_ACQ_TIME_HISTOGRAM

	Multi Acquisition Time Histogram

	
ARRAY_INTEGRAL

	Array Integral

	
DERIVATIVE

	Derivative

	
INVERSE

	Inverse

	
HANNING_WINDOW

	Hanning Window

	
FLAT_TOP_WINDOW

	Flat Top Window

	
POLYNOMIAL_INTERPOLATION

	Polynomial Interpolation

	
MULTIPLY_CHANNELS

	Multiply Channels

	
ADD_CHANNELS

	Add Channels

	
SUBTRACT_CHANNELS

	Subtract Channels

	
DIVIDE_CHANNELS

	Divide Channels

	
MULTI_ACQ_AVERAGE

	Multi Acquisition Average

	
BUTTERWORTH_FILTER

	Butterworth IIR Filter

	
CHEBYSHEV_FILTER

	Chebyshev IIR Filter

	
FFT_AMP_SPECTRUM_DB

	FFT Amp. Spectrum (dB)

	
HAMMING_WINDOW

	Hamming Window

	
WINDOWED_FIR_FILTER

	FIR Windowed Filter

	
BESSEL_FILTER

	Bessel IIR Filter

	
TRIANGLE_WINDOW

	Triangle Window

	
BLACKMAN_WINDOW

	Blackman Window

	
ARRAY_OFFSET

	Array Offset

	
ARRAY_GAIN

	Array Gain

CableSenseMode

	
class niscope.CableSenseMode

	
	
DISABLED

	The oscilloscope is not configured to emit a CableSense signal.

	
ON_DEMAND

	The oscilloscope is configured to emit a single CableSense pulse.

ClearableMeasurement

	
class niscope.ClearableMeasurement

	
	
ALL_MEASUREMENTS

	

	
MULTI_ACQ_VOLTAGE_HISTOGRAM

	

	
MULTI_ACQ_TIME_HISTOGRAM

	

	
MULTI_ACQ_AVERAGE

	

	
FREQUENCY

	

	
AVERAGE_FREQUENCY

	

	
FFT_FREQUENCY

	

	
PERIOD

	

	
AVERAGE_PERIOD

	

	
RISE_TIME

	

	
FALL_TIME

	

	
RISE_SLEW_RATE

	

	
FALL_SLEW_RATE

	

	
OVERSHOOT

	

	
PRESHOOT

	

	
VOLTAGE_RMS

	

	
VOLTAGE_CYCLE_RMS

	

	
AC_ESTIMATE

	

	
FFT_AMPLITUDE

	

	
VOLTAGE_AVERAGE

	

	
VOLTAGE_CYCLE_AVERAGE

	

	
DC_ESTIMATE

	

	
VOLTAGE_MAX

	

	
VOLTAGE_MIN

	

	
VOLTAGE_PEAK_TO_PEAK

	

	
VOLTAGE_HIGH

	

	
VOLTAGE_LOW

	

	
AMPLITUDE

	

	
VOLTAGE_TOP

	

	
VOLTAGE_BASE

	

	
VOLTAGE_BASE_TO_TOP

	

	
WIDTH_NEG

	

	
WIDTH_POS

	

	
DUTY_CYCLE_NEG

	

	
DUTY_CYCLE_POS

	

	
INTEGRAL

	

	
AREA

	

	
CYCLE_AREA

	

	
TIME_DELAY

	

	
PHASE_DELAY

	

	
LOW_REF_VOLTS

	

	
MID_REF_VOLTS

	

	
HIGH_REF_VOLTS

	

	
VOLTAGE_HISTOGRAM_MEAN

	

	
VOLTAGE_HISTOGRAM_STDEV

	

	
VOLTAGE_HISTOGRAM_MEDIAN

	

	
VOLTAGE_HISTOGRAM_MODE

	

	
VOLTAGE_HISTOGRAM_MAX

	

	
VOLTAGE_HISTOGRAM_MIN

	

	
VOLTAGE_HISTOGRAM_PEAK_TO_PEAK

	

	
VOLTAGE_HISTOGRAM_MEAN_PLUS_STDEV

	

	
VOLTAGE_HISTOGRAM_MEAN_PLUS_2_STDEV

	

	
VOLTAGE_HISTOGRAM_MEAN_PLUS_3_STDEV

	

	
VOLTAGE_HISTOGRAM_HITS

	

	
VOLTAGE_HISTOGRAM_NEW_HITS

	

	
TIME_HISTOGRAM_MEAN

	

	
TIME_HISTOGRAM_STDEV

	

	
TIME_HISTOGRAM_MEDIAN

	

	
TIME_HISTOGRAM_MODE

	

	
TIME_HISTOGRAM_MAX

	

	
TIME_HISTOGRAM_MIN

	

	
TIME_HISTOGRAM_PEAK_TO_PEAK

	

	
TIME_HISTOGRAM_MEAN_PLUS_STDEV

	

	
TIME_HISTOGRAM_MEAN_PLUS_2_STDEV

	

	
TIME_HISTOGRAM_MEAN_PLUS_3_STDEV

	

	
TIME_HISTOGRAM_HITS

	

	
TIME_HISTOGRAM_NEW_HITS

	

FIRFilterWindow

	
class niscope.FIRFilterWindow

	
	
NONE

	No window.

	
HANNING

	Specifies a Hanning window.

	
FLAT_TOP

	Specifies a Flat Top window.

	
HAMMING

	Specifies a Hamming window.

	
TRIANGLE

	Specifies a Triangle window.

	
BLACKMAN

	Specifies a Blackman window.

FetchRelativeTo

	
class niscope.FetchRelativeTo

	
	
READ_POINTER

	The read pointer is set to zero when a new acquisition is initiated. After every fetch the read pointer is incremeted to be the sample after the last sample retrieved. Therefore, you can repeatedly fetch relative to the read pointer for a continuous acquisition program.

	
PRETRIGGER

	Fetches relative to the first pretrigger point requested with niscope.Session.configure_horizontal_timing().

	
NOW

	Fetch data at the last sample acquired.

	
START

	Fetch data starting at the first point sampled by the digitizer.

	
TRIGGER

	Fetch at the first posttrigger sample.

FilterType

	
class niscope.FilterType

	
	
LOWPASS

	Specifies lowpass as the filter type.

	
HIGHPASS

	Specifies highpass as the filter type.

	
BANDPASS

	Specifies bandpass as the filter type.

	
BANDSTOP

	Specifies bandstop as the filter type.

FlexFIRAntialiasFilterType

	
class niscope.FlexFIRAntialiasFilterType

	
	
FOURTYEIGHT_TAP_STANDARD

	This filter is optimized for alias protection and frequency-domain flatness

	
FOURTYEIGHT_TAP_HANNING

	This filter is optimized for the lowest possible bandwidth for a 48 tap filter and maximizes the SNR

	
SIXTEEN_TAP_HANNING

	This filter is optimized for the lowest possible bandwidth for a 16 tap filter and maximizes the SNR

	
EIGHT_TAP_HANNING

	This filter is optimized for the lowest possible bandwidth for a 8 tap filter and maximizes the SNR

GlitchCondition

	
class niscope.GlitchCondition

	
	
GREATER

	Trigger on pulses with a duration greater than the specified glitch width.

	
LESS

	Trigger on pulses with a duration shorter than the specified glitch width.

GlitchPolarity

	
class niscope.GlitchPolarity

	
	
POSITIVE

	Trigger on pulses of positive polarity relative to the trigger threshold.

	
NEGATIVE

	Trigger on pulses of negative polarity relative to the trigger threshold.

	
EITHER

	Trigger on pulses of either positive or negative polarity.

Option

	
class niscope.Option

	
	
SELF_CALIBRATE_ALL_CHANNELS

	Self Calibrating all Channels

	
RESTORE_EXTERNAL_CALIBRATION

	Restore External Calibration.

PercentageMethod

	
class niscope.PercentageMethod

	
	
LOWHIGH

	Specifies that the reference level percentages should be computed using
the low/high method,

	
MINMAX

	Reference level percentages are computed using the min/max method.

	
BASETOP

	Reference level percentages are computed using the base/top method.

RISMethod

	
class niscope.RISMethod

	
	
EXACT_NUM_AVERAGES

	Acquires exactly the specified number of records for each bin in the RIS acquisition. An error is returned from the fetch method if the RIS acquisition does not successfully acquire the specified number of waveforms within the timeout period. You may call the fetch method again to allow more time for the acquisition to finish.

	
MIN_NUM_AVERAGES

	Each RIS sample is the average of a least a minimum number of randomly
distributed points.

	
INCOMPLETE

	Returns the RIS waveform after the specified timeout even if it is incomplete. If no waveforms have been acquired in certain bins, these bins will have a NaN (when fetching scaled data) or a zero (when fetching binary data). A warning (positive error code) is returned from the fetch method if the RIS acquisition did not finish. The acquisition aborts when data is returned.

	
LIMITED_BIN_WIDTH

	Limits the waveforms in the various bins to be within 200 ps of the center of the bin.

RefLevelUnits

	
class niscope.RefLevelUnits

	
	
VOLTS

	Specifies that the reference levels are given in units of volts.

	
PERCENTAGE

	(Default) Specifies that the reference levels are given in percentage
units.

RefTriggerDetectorLocation

	
class niscope.RefTriggerDetectorLocation

	
	
ANALOG_DETECTION_CIRCUIT

	use the hardware analog circuitry to implement the reference trigger. This option will trigger before any onboard signal processing.

	
DDC_OUTPUT

	use the onboard signal processing logic to implement the reference trigger. This option will trigger based on the onboard signal processed data.

RuntPolarity

	
class niscope.RuntPolarity

	
	
POSITIVE

	Trigger on pulses of positive polarity relative to niscope.Session.runt_low_threshold that do not cross niscope.Session.runt_high_threshold.

	
NEGATIVE

	Trigger on pulses of negative polarity relative to niscope.Session.runt_high_threshold that do not cross niscope.Session.runt_low_threshold.

	
EITHER

	Trigger on pulses of either positive or negative polarity.

RuntTimeCondition

	
class niscope.RuntTimeCondition

	
	
NONE

	Time qualification is disabled. Trigger on runt pulses based solely on the voltage level of the pulses.

	
WITHIN

	Trigger on pulses that, in addition to meeting runt voltage criteria, have a duration within the range bounded by niscope.Session.runt_time_low_limit and niscope.Session.runt_time_high_limit.

	
OUTSIDE

	Trigger on pulses that, in addition to meeting runt voltage criteria, have a duration not within the range bounded by niscope.Session.runt_time_low_limit and niscope.Session.runt_time_high_limit.

ScalarMeasurement

	
class niscope.ScalarMeasurement

	
	
NO_MEASUREMENT

	None

	
RISE_TIME

	

	
FALL_TIME

	

	
FREQUENCY

	

	
PERIOD

	

	
VOLTAGE_RMS

	

	
VOLTAGE_PEAK_TO_PEAK

	

	
VOLTAGE_MAX

	

	
VOLTAGE_MIN

	

	
VOLTAGE_HIGH

	

	
VOLTAGE_LOW

	

	
VOLTAGE_AVERAGE

	

	
WIDTH_NEG

	

	
WIDTH_POS

	

	
DUTY_CYCLE_NEG

	

	
DUTY_CYCLE_POS

	

	
AMPLITUDE

	

	
VOLTAGE_CYCLE_RMS

	

	
VOLTAGE_CYCLE_AVERAGE

	

	
OVERSHOOT

	

	
PRESHOOT

	

	
LOW_REF_VOLTS

	

	
MID_REF_VOLTS

	

	
HIGH_REF_VOLTS

	

	
AREA

	

	
CYCLE_AREA

	

	
INTEGRAL

	

	
VOLTAGE_BASE

	

	
VOLTAGE_TOP

	

	
FFT_FREQUENCY

	

	
FFT_AMPLITUDE

	

	
RISE_SLEW_RATE

	

	
FALL_SLEW_RATE

	

	
AC_ESTIMATE

	

	
DC_ESTIMATE

	

	
TIME_DELAY

	

	
AVERAGE_PERIOD

	

	
AVERAGE_FREQUENCY

	

	
VOLTAGE_BASE_TO_TOP

	

	
PHASE_DELAY

	

TerminalConfiguration

	
class niscope.TerminalConfiguration

	
	
SINGLE_ENDED

	Channel is single ended

	
UNBALANCED_DIFFERENTIAL

	Channel is unbalanced differential

	
DIFFERENTIAL

	Channel is differential

TriggerCoupling

	
class niscope.TriggerCoupling

	
	
AC

	AC coupling

	
DC

	DC coupling

	
HF_REJECT

	Highpass filter coupling

	
LF_REJECT

	Lowpass filter coupling

	
AC_PLUS_HF_REJECT

	Highpass and lowpass filter coupling

TriggerModifier

	
class niscope.TriggerModifier

	
	
NO_TRIGGER_MOD

	Normal triggering.

	
AUTO

	Software will trigger an acquisition automatically if no trigger arrives
after a certain amount of time.

	
AUTO_LEVEL

	

TriggerSlope

	
class niscope.TriggerSlope

	
	
NEGATIVE

	Falling edge

	
POSITIVE

	Rising edge

	
SLOPE_EITHER

	Either edge

TriggerType

	
class niscope.TriggerType

	
	
EDGE

	Configures the digitizer for edge triggering. An edge trigger occurs when the trigger signal crosses the trigger level specified with the set trigger slope. You configure the trigger level and slope with niscope.Session.configure_trigger_edge().

	
HYSTERESIS

	Configures the digitizer for hysteresis triggering. A hysteresis trigger occurs when the trigger signal crosses the trigger level with the specified slope and passes through the hysteresis window you specify. You configure the trigger level, slope, and hysteresis with niscope.Session.configure_trigger_hysteresis().

	
DIGITAL

	Configures the digitizer for digital triggering. A digital trigger occurs when the trigger signal has the specified slope. You configure the trigger slope with niscope.Session.configure_trigger_digital().

	
WINDOW

	Configures the digitizer for window triggering. A window trigger occurs when the trigger signal enters or leaves the window defined by the values you specify with the Low Window Level, High Window Level, and Window Mode Parameters. You configure the low window level high window level, and window mode with niscope.Session.configure_trigger_window().

	
SOFTWARE

	Configures the digitizer for software triggering. A software trigger occurs when niscope.Session.SendSoftwareTrigger() is called.

	
TV

	Configures the digitizer for video/TV triggering. You configure the video trigger parameters like signal Format, Line to trigger off of, Polarity, and Enable DC Restore with niscope.Session.configure_trigger_video().

	
GLITCH

	

	
WIDTH

	

	
RUNT

	

	
IMMEDIATE

	Configures the digitizer for immediate triggering. An immediate trigger occurs as soon as the pretrigger samples are acquired.

TriggerWindowMode

	
class niscope.TriggerWindowMode

	
	
ENTERING

	Trigger upon entering the window

	
LEAVING

	Trigger upon leaving the window

	
ENTERING_OR_LEAVING

	

VerticalCoupling

	
class niscope.VerticalCoupling

	
	
AC

	AC coupling

	
DC

	DC coupling

	
GND

	GND coupling

VideoPolarity

	
class niscope.VideoPolarity

	
	
POSITIVE

	Specifies that the video signal has positive polarity.

	
NEGATIVE

	Specifies that the video signal has negative polarity.

VideoSignalFormat

	
class niscope.VideoSignalFormat

	
	
NTSC

	NTSC signal format supports line numbers from 1 to 525

	
PAL

	PAL signal format supports line numbers from 1 to 625

	
SECAM

	SECAM signal format supports line numbers from 1 to 625

	
M_PAL

	M-PAL signal format supports line numbers from 1 to 525

	
VIDEO_480I_59_94_FIELDS_PER_SECOND

	480 lines, interlaced, 59.94 fields per second

	
VIDEO_480I_60_FIELDS_PER_SECOND

	480 lines, interlaced, 60 fields per second

	
VIDEO_480P_59_94_FRAMES_PER_SECOND

	480 lines, progressive, 59.94 frames per second

	
VIDEO_480P_60_FRAMES_PER_SECOND

	480 lines, progressive,60 frames per second

	
VIDEO_576I_50_FIELDS_PER_SECOND

	576 lines, interlaced, 50 fields per second

	
VIDEO_576P_50_FRAMES_PER_SECOND

	576 lines, progressive, 50 frames per second

	
VIDEO_720P_50_FRAMES_PER_SECOND

	720 lines, progressive, 50 frames per second

	
VIDEO_720P_59_94_FRAMES_PER_SECOND

	720 lines, progressive, 59.94 frames per second

	
VIDEO_720P_60_FRAMES_PER_SECOND

	720 lines, progressive, 60 frames per second

	
VIDEO_1080I_50_FIELDS_PER_SECOND

	1,080 lines, interlaced, 50 fields per second

	
VIDEO_1080I_59_94_FIELDS_PER_SECOND

	1,080 lines, interlaced, 59.94 fields per second

	
VIDEO_1080I_60_FIELDS_PER_SECOND

	1,080 lines, interlaced, 60 fields per second

	
VIDEO_1080P_24_FRAMES_PER_SECOND

	1,080 lines, progressive, 24 frames per second

VideoTriggerEvent

	
class niscope.VideoTriggerEvent

	
	
FIELD1

	Trigger on field 1 of the signal

	
FIELD2

	Trigger on field 2 of the signal

	
ANY_FIELD

	Trigger on the first field acquired

	
ANY_LINE

	Trigger on the first line acquired

	
LINE_NUMBER

	Trigger on a specific line of a video signal. Valid values vary depending on the signal format configured.

WhichTrigger

	
class niscope.WhichTrigger

	
	
START

	

	
ARM_REFERENCE

	

	
REFERENCE

	

	
ADVANCE

	

WidthCondition

	
class niscope.WidthCondition

	
	
WITHIN

	Trigger on pulses with a duration within the range bounded by niscope.Session.width_low_threshold and niscope.Session.width_high_threshold.

	
OUTSIDE

	Trigger on pulses with a duration not within the range bounded by niscope.Session.width_low_threshold and niscope.Session.width_high_threshold.

WidthPolarity

	
class niscope.WidthPolarity

	
	
POSITIVE

	Trigger on pulses of positive polarity relative to the trigger threshold.

	
NEGATIVE

	Trigger on pulses of negative polarity relative to the trigger threshold.

	
EITHER

	Trigger on pulses of either positive or negative polarity.

Exceptions and Warnings

Error

	
exception niscope.errors.Error

	Base exception type that all NI-SCOPE exceptions derive from

DriverError

	
exception niscope.errors.DriverError

	An error originating from the NI-SCOPE driver

UnsupportedConfigurationError

	
exception niscope.errors.UnsupportedConfigurationError

	An error due to using this module in an usupported platform.

DriverNotInstalledError

	
exception niscope.errors.DriverNotInstalledError

	An error due to using this module without the driver runtime installed.

DriverTooOldError

	
exception niscope.errors.DriverTooOldError

	An error due to using this module with an older version of the NI-SCOPE driver runtime.

DriverTooNewError

	
exception niscope.errors.DriverTooNewError

	An error due to the NI-SCOPE driver runtime being too new for this module.

InvalidRepeatedCapabilityError

	
exception niscope.errors.InvalidRepeatedCapabilityError

	An error due to an invalid character in a repeated capability

SelfTestError

	
exception niscope.errors.SelfTestError

	An error due to a failed self-test

RpcError

	
exception niscope.errors.RpcError

	An error specific to sessions to the NI gRPC Device Server

DriverWarning

	
exception niscope.errors.DriverWarning

	A warning originating from the NI-SCOPE driver

Examples

You can download all niscope examples here [https://github.com/ni/nimi-python/releases/download/1.4.8/niscope_examples.zip]

niscope_fetch.py

(niscope_fetch.py) [https://github.com/ni/nimi-python/blob/1.4.8/src/niscope/examples/niscope_fetch.py]

 1#!/usr/bin/python
 2
 3import argparse
 4import niscope
 5import pprint
 6import sys
 7
 8pp = pprint.PrettyPrinter(indent=4, width=80)
 9
10
11def example(resource_name, channels, options, length, voltage):
12 with niscope.Session(resource_name=resource_name, options=options) as session:
13 session.configure_vertical(range=voltage, coupling=niscope.VerticalCoupling.AC)
14 session.configure_horizontal_timing(min_sample_rate=50000000, min_num_pts=length, ref_position=50.0, num_records=1, enforce_realtime=True)
15 with session.initiate():
16 waveforms = session.channels[channels].fetch(num_samples=length)
17 for i in range(len(waveforms)):
18 print(f'Waveform {i} information:')
19 print(str(waveforms[i]) + '\n\n')
20
21
22def _main(argsv):
23 parser = argparse.ArgumentParser(description='Acquires one record from the given channels.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
24 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource name of an NI digitizer.')
25 parser.add_argument('-c', '--channels', default='0', help='Channel(s) to use')
26 parser.add_argument('-l', '--length', default=1000, type=int, help='Measure record length')
27 parser.add_argument('-v', '--voltage', default=1.0, type=float, help='Voltage range (V)')
28 parser.add_argument('-op', '--option-string', default='', type=str, help='Option string')
29 args = parser.parse_args(argsv)
30 example(args.resource_name, args.channels, args.option_string, args.length, args.voltage)
31
32
33def main():
34 _main(sys.argv[1:])
35
36
37def test_example():
38 options = {'simulate': True, 'driver_setup': {'Model': '5164', 'BoardType': 'PXIe', }, }
39 example('PXI1Slot2', '0', options, 1000, 1.0)
40
41
42def test_main():
43 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:5164; BoardType:PXIe',]
44 _main(cmd_line)
45
46
47if __name__ == '__main__':
48 main()
49

niscope_fetch_forever.py

(niscope_fetch_forever.py) [https://github.com/ni/nimi-python/blob/1.4.8/src/niscope/examples/niscope_fetch_forever.py]

 1#!/usr/bin/python
 2
 3import argparse
 4import hightime
 5import niscope
 6import numpy as np
 7import pprint
 8import sys
 9
10
11pp = pprint.PrettyPrinter(indent=4, width=80)
12
13
14# We use fetch_into which allows us to allocate a single buffer per channel and "fetch into" it a section at a time without having to
15# reconstruct the waveform once we are done
16def example(resource_name, options, total_acquisition_time_in_seconds, voltage, sample_rate_in_hz, samples_per_fetch):
17 total_samples = int(total_acquisition_time_in_seconds * sample_rate_in_hz)
18 # 1. Opening session
19 with niscope.Session(resource_name=resource_name, options=options) as session:
20 # We will acquire on all channels of the device
21 channel_list = [c for c in range(session.channel_count)] # Need an actual list and not a range
22
23 # 2. Creating numpy arrays
24 waveforms = [np.ndarray(total_samples, dtype=np.float64) for c in channel_list]
25
26 # 3. Configuring
27 session.configure_horizontal_timing(min_sample_rate=sample_rate_in_hz, min_num_pts=1, ref_position=0.0, num_records=1, enforce_realtime=True)
28 session.channels[channel_list].configure_vertical(voltage, coupling=niscope.VerticalCoupling.DC, enabled=True)
29 # Configure software trigger, but never send the trigger.
30 # This starts an infinite acquisition, until you call session.abort() or session.close()
31 session.configure_trigger_software()
32 current_pos = 0
33 # 4. initiating
34 with session.initiate():
35 while current_pos < total_samples:
36 # We fetch each channel at a time so we don't have to de-interleave afterwards
37 # We do not keep the wfm_info returned from fetch_into
38 for channel, waveform in zip(channel_list, waveforms):
39 # 5. fetching - we return the slice of the waveform array that we want to "fetch into"
40 session.channels[channel].fetch_into(waveform[current_pos:current_pos + samples_per_fetch], relative_to=niscope.FetchRelativeTo.READ_POINTER,
41 offset=0, record_number=0, num_records=1, timeout=hightime.timedelta(seconds=5.0))
42 current_pos += samples_per_fetch
43
44
45def _main(argsv):
46 parser = argparse.ArgumentParser(description='Fetch more samples than will fit in memory.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
47 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource name of an NI digitizer.')
48 parser.add_argument('-t', '--time', default=10, type=int, help='Time to sample (s)')
49 parser.add_argument('-v', '--voltage', default=1.0, type=float, help='Voltage range (V)')
50 parser.add_argument('-op', '--option-string', default='', type=str, help='Option string')
51 parser.add_argument('-r', '--sample-rate', default=1000.0, type=float, help='Sample Rate (Hz)')
52 parser.add_argument('-s', '--samples-per-fetch', default=100, type=int, help='Samples per fetch')
53 args = parser.parse_args(argsv)
54 example(args.resource_name, args.option_string, args.time, args.voltage, args.sample_rate, args.samples_per_fetch)
55
56
57def main():
58 _main(sys.argv[1:])
59
60
61def test_example():
62 options = {'simulate': True, 'driver_setup': {'Model': '5164', 'BoardType': 'PXIe', }, }
63 example('PXI1Slot2', options, 10, 1.0, 1000.0, 100)
64
65
66def test_main():
67 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:5164; BoardType:PXIe',]
68 _main(cmd_line)
69
70
71if __name__ == '__main__':
72 main()
73

niscope_fetch_into.py

(niscope_fetch_into.py) [https://github.com/ni/nimi-python/blob/1.4.8/src/niscope/examples/niscope_fetch_into.py]

 1#!/usr/bin/python
 2
 3import argparse
 4import niscope
 5import numpy
 6import pprint
 7import sys
 8
 9pp = pprint.PrettyPrinter(indent=4, width=80)
10
11
12def example(resource_name, channels, options, length, voltage):
13 # fetch_into() allows you to preallocate and reuse the destination of the fetched waveforms, which can result in better performance at the expense of the usability of fetch().
14 channels = [ch.strip() for ch in channels.split(",")]
15 num_channels = len(channels)
16 num_records = 5
17 total_num_wfms = num_channels * num_records
18 # preallocate a single array for all samples in all waveforms
19 # Supported array types are: numpy.float64, numpy.int8, numpy.int16, numpy.int32
20 # int8, int16, int32 are for fetching unscaled data, which is the fastest way to fetch.
21 # Gain and Offset are stored in the returned WaveformInfo objects and can be applied to the data by the user later.
22 wfm = numpy.ndarray(length * total_num_wfms, dtype=numpy.float64)
23 with niscope.Session(resource_name=resource_name, options=options) as session:
24 session.configure_vertical(range=voltage, coupling=niscope.VerticalCoupling.AC)
25 session.configure_horizontal_timing(min_sample_rate=50000000, min_num_pts=length, ref_position=50.0, num_records=num_records, enforce_realtime=True)
26 with session.initiate():
27 waveforms = session.channels[channels].fetch_into(waveform=wfm, num_records=num_records)
28 for i in range(len(waveforms)):
29 print(f'Waveform {i} information:')
30 print(f'{waveforms[i]}\n\n')
31 print(f'Samples: {waveforms[i].samples.tolist()}')
32
33
34def _main(argsv):
35 parser = argparse.ArgumentParser(description='Fetches data directly into a preallocated numpy array.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
36 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource name of an NI digitizer.')
37 parser.add_argument('-c', '--channels', default='0', help='Channel(s) to use')
38 parser.add_argument('-l', '--length', default=100, type=int, help='Measure record length')
39 parser.add_argument('-v', '--voltage', default=1.0, type=float, help='Voltage range (V)')
40 parser.add_argument('-op', '--option-string', default='', type=str, help='Option string')
41 args = parser.parse_args(argsv)
42 example(args.resource_name, args.channels, args.option_string, args.length, args.voltage)
43
44
45def main():
46 _main(sys.argv[1:])
47
48
49def test_example():
50 options = {'simulate': True, 'driver_setup': {'Model': '5164', 'BoardType': 'PXIe', }, }
51 example('PXI1Slot2', '0, 1', options, 100, 1.0)
52
53
54def test_main():
55 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:5164; BoardType:PXIe',]
56 _main(cmd_line)
57
58
59if __name__ == '__main__':
60 main()
61

niscope_read.py

(niscope_read.py) [https://github.com/ni/nimi-python/blob/1.4.8/src/niscope/examples/niscope_read.py]

 1#!/usr/bin/python
 2
 3import argparse
 4import niscope
 5import pprint
 6import sys
 7
 8pp = pprint.PrettyPrinter(indent=4, width=80)
 9
10
11def example(resource_name, channels, options, length, voltage):
12 with niscope.Session(resource_name=resource_name, options=options) as session:
13 session.configure_vertical(range=voltage, coupling=niscope.VerticalCoupling.AC)
14 session.configure_horizontal_timing(min_sample_rate=50000000, min_num_pts=length, ref_position=50.0, num_records=1, enforce_realtime=True)
15 waveforms = session.channels[channels].read(num_samples=length)
16 for i in range(len(waveforms)):
17 print(f'Waveform {i} information:')
18 print(str(waveforms[i]) + '\n\n')
19
20
21def _main(argsv):
22 parser = argparse.ArgumentParser(description='Acquires one record from the given channels.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
23 parser.add_argument('-n', '--resource-name', default='PXI1Slot2', help='Resource name of an NI digitizer.')
24 parser.add_argument('-c', '--channels', default='0', help='Channel(s) to use')
25 parser.add_argument('-l', '--length', default=1000, type=int, help='Measure record length')
26 parser.add_argument('-v', '--voltage', default=1.0, type=float, help='Voltage range (V)')
27 parser.add_argument('-op', '--option-string', default='', type=str, help='Option string')
28 args = parser.parse_args(argsv)
29 example(args.resource_name, args.channels, args.option_string, args.length, args.voltage)
30
31
32def main():
33 _main(sys.argv[1:])
34
35
36def test_example():
37 options = {'simulate': True, 'driver_setup': {'Model': '5164', 'BoardType': 'PXIe', }, }
38 example('PXI1Slot2', '0', options, 1000, 1.0)
39
40
41def test_main():
42 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:5164; BoardType:PXIe',]
43 _main(cmd_line)
44
45
46if __name__ == '__main__':
47 main()
48

gRPC Support

Support for using NI-SCOPE over gRPC

SessionInitializationBehavior

	
class niscope.SessionInitializationBehavior

	
	
AUTO

	The NI gRPC Device Server will attach to an existing session with the specified name if it exists,
otherwise the server will initialize a new session.

Note

When using the Session as a context manager and the context exits, the behavior depends on what happened when the constructor
was called. If it resulted in a new session being initialized on the NI gRPC Device Server, then it will automatically close the
server session. If it instead attached to an existing session, then it will detach from the server session and leave it open.

	
INITIALIZE_SERVER_SESSION

	Require the NI gRPC Device Server to initialize a new session with the specified name.

Note

When using the Session as a context manager and the context exits, it will automatically close the
server session.

	
ATTACH_TO_SERVER_SESSION

	Require the NI gRPC Device Server to attach to an existing session with the specified name.

Note

When using the Session as a context manager and the context exits, it will detach from the server session
and leave it open.

GrpcSessionOptions

	
class niscope.GrpcSessionOptions(self, grpc_channel, session_name, initialization_behavior=SessionInitializationBehavior.AUTO)

	Collection of options that specifies session behaviors related to gRPC.

Creates and returns an object you can pass to a Session constructor.

	Parameters:

	
	grpc_channel (grpc.Channel) – Specifies the channel to the NI gRPC Device Server.

	session_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – User-specified name that identifies the driver session on the NI gRPC Device Server.

This is different from the resource name parameter many APIs take as a separate
parameter. Specifying a name makes it easy to share sessions across multiple gRPC clients.
You can use an empty string if you want to always initialize a new session on the server.
To attach to an existing session, you must specify the session name it was initialized with.

	initialization_behavior (niscope.SessionInitializationBehavior) – Specifies whether it is acceptable to initialize a new session or attach to an existing one, or if only one of the behaviors is desired.

The driver session exists on the NI gRPC Device Server.

 Python Module Index

 n

 		 	

 		
 n	

 	
 	
 niscope	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	abort() (in module niscope.Session)

 	absolute_sample_clock_offset (in module niscope.Session)

 	AC (niscope.TriggerCoupling attribute)

 	(niscope.VerticalCoupling attribute)

 	AC_ESTIMATE (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	AC_PLUS_HF_REJECT (niscope.TriggerCoupling attribute)

 	accessory_gain (in module niscope.Session)

 	accessory_offset (in module niscope.Session)

 	acq_arm_source (in module niscope.Session)

 	acquisition_start_time (in module niscope.Session)

 	acquisition_status() (in module niscope.Session)

 	acquisition_type (in module niscope.Session)

 	AcquisitionStatus (class in niscope)

 	AcquisitionType (class in niscope)

 	ADD_CHANNELS (niscope.ArrayMeasurement attribute)

 	add_waveform_processing() (in module niscope.Session)

 	adv_trig_src (in module niscope.Session)

 	ADVANCE (niscope.WhichTrigger attribute)

 	advance_trigger_terminal_name (in module niscope.Session)

 	ALL_MEASUREMENTS (niscope.ClearableMeasurement attribute)

 	allow_more_records_than_memory (in module niscope.Session)

 	
 	AMPLITUDE (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	ANALOG_DETECTION_CIRCUIT (niscope.RefTriggerDetectorLocation attribute)

 	ANY_FIELD (niscope.VideoTriggerEvent attribute)

 	ANY_LINE (niscope.VideoTriggerEvent attribute)

 	AREA (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	arm_ref_trig_src (in module niscope.Session)

 	ARM_REFERENCE (niscope.WhichTrigger attribute)

 	ARRAY_GAIN (niscope.ArrayMeasurement attribute)

 	ARRAY_INTEGRAL (niscope.ArrayMeasurement attribute)

 	ARRAY_OFFSET (niscope.ArrayMeasurement attribute)

 	ArrayMeasurement (class in niscope)

 	ATTACH_TO_SERVER_SESSION (niscope.SessionInitializationBehavior attribute)

 	AUTO (niscope.SessionInitializationBehavior attribute)

 	(niscope.TriggerModifier attribute)

 	AUTO_LEVEL (niscope.TriggerModifier attribute)

 	auto_setup() (in module niscope.Session)

 	AVERAGE_FREQUENCY (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	AVERAGE_PERIOD (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

B

 	
 	backlog (in module niscope.Session)

 	BANDPASS (niscope.FilterType attribute)

 	bandpass_filter_enabled (in module niscope.Session)

 	BANDSTOP (niscope.FilterType attribute)

 	BASETOP (niscope.PercentageMethod attribute)

 	
 	BESSEL_FILTER (niscope.ArrayMeasurement attribute)

 	binary_sample_width (in module niscope.Session)

 	BLACKMAN (niscope.FIRFilterWindow attribute)

 	BLACKMAN_WINDOW (niscope.ArrayMeasurement attribute)

 	BUTTERWORTH_FILTER (niscope.ArrayMeasurement attribute)

C

 	
 	cable_sense_mode (in module niscope.Session)

 	cable_sense_signal_enable (in module niscope.Session)

 	cable_sense_voltage (in module niscope.Session)

 	CableSenseMode (class in niscope)

 	channel_count (in module niscope.Session)

 	channel_enabled (in module niscope.Session)

 	channel_terminal_configuration (in module niscope.Session)

 	channels (niscope.Session.niscope.Session attribute)

 	CHEBYSHEV_FILTER (niscope.ArrayMeasurement attribute)

 	clear_waveform_measurement_stats() (in module niscope.Session)

 	clear_waveform_processing() (in module niscope.Session)

 	ClearableMeasurement (class in niscope)

 	close() (in module niscope.Session)

 	commit() (in module niscope.Session)

 	
 	COMPLETE (niscope.AcquisitionStatus attribute)

 	configure_chan_characteristics() (in module niscope.Session)

 	configure_equalization_filter_coefficients() (in module niscope.Session)

 	configure_horizontal_timing() (in module niscope.Session)

 	configure_trigger_digital() (in module niscope.Session)

 	configure_trigger_edge() (in module niscope.Session)

 	configure_trigger_hysteresis() (in module niscope.Session)

 	configure_trigger_immediate() (in module niscope.Session)

 	configure_trigger_software() (in module niscope.Session)

 	configure_trigger_video() (in module niscope.Session)

 	configure_trigger_window() (in module niscope.Session)

 	configure_vertical() (in module niscope.Session)

 	CYCLE_AREA (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

D

 	
 	data_transfer_block_size (in module niscope.Session)

 	data_transfer_maximum_bandwidth (in module niscope.Session)

 	data_transfer_preferred_packet_size (in module niscope.Session)

 	DC (niscope.TriggerCoupling attribute)

 	(niscope.VerticalCoupling attribute)

 	DC_ESTIMATE (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	DDC (niscope.AcquisitionType attribute)

 	DDC_OUTPUT (niscope.RefTriggerDetectorLocation attribute)

 	DERIVATIVE (niscope.ArrayMeasurement attribute)

 	device_temperature (in module niscope.Session)

 	DIFFERENTIAL (niscope.TerminalConfiguration attribute)

 	
 	DIGITAL (niscope.TriggerType attribute)

 	disable() (in module niscope.Session)

 	DISABLED (niscope.CableSenseMode attribute)

 	DIVIDE_CHANNELS (niscope.ArrayMeasurement attribute)

 	DriverError

 	DriverNotInstalledError

 	DriverTooNewError

 	DriverTooOldError

 	DriverWarning

 	DUTY_CYCLE_NEG (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	DUTY_CYCLE_POS (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

E

 	
 	EDGE (niscope.TriggerType attribute)

 	EIGHT_TAP_HANNING (niscope.FlexFIRAntialiasFilterType attribute)

 	EITHER (niscope.GlitchPolarity attribute)

 	(niscope.RuntPolarity attribute)

 	(niscope.WidthPolarity attribute)

 	enable_dc_restore (in module niscope.Session)

 	enable_time_interleaved_sampling (in module niscope.Session)

 	enabled_channels (in module niscope.Session)

 	end_of_acquisition_event_output_terminal (in module niscope.Session)

 	end_of_acquisition_event_terminal_name (in module niscope.Session)

 	end_of_record_event_output_terminal (in module niscope.Session)

 	end_of_record_event_terminal_name (in module niscope.Session)

 	
 	end_of_record_to_advance_trigger_holdoff (in module niscope.Session)

 	ENTERING (niscope.TriggerWindowMode attribute)

 	ENTERING_OR_LEAVING (niscope.TriggerWindowMode attribute)

 	equalization_filter_enabled (in module niscope.Session)

 	equalization_num_coefficients (in module niscope.Session)

 	Error

 	EXACT_NUM_AVERAGES (niscope.RISMethod attribute)

 	export_attribute_configuration_buffer() (in module niscope.Session)

 	export_attribute_configuration_file() (in module niscope.Session)

 	exported_advance_trigger_output_terminal (in module niscope.Session)

 	exported_ref_trigger_output_terminal (in module niscope.Session)

 	exported_start_trigger_output_terminal (in module niscope.Session)

F

 	
 	FALL_SLEW_RATE (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	FALL_TIME (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	fetch() (in module niscope.Session)

 	fetch_array_measurement() (in module niscope.Session)

 	fetch_into() (in module niscope.Session)

 	fetch_measurement_stats() (in module niscope.Session)

 	FetchRelativeTo (class in niscope)

 	FFT_AMP_SPECTRUM_DB (niscope.ArrayMeasurement attribute)

 	FFT_AMP_SPECTRUM_VOLTS_RMS (niscope.ArrayMeasurement attribute)

 	FFT_AMPLITUDE (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	FFT_FREQUENCY (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	
 	FFT_PHASE_SPECTRUM (niscope.ArrayMeasurement attribute)

 	FIELD1 (niscope.VideoTriggerEvent attribute)

 	FIELD2 (niscope.VideoTriggerEvent attribute)

 	FilterType (class in niscope)

 	FIRFilterWindow (class in niscope)

 	FLAT_TOP (niscope.FIRFilterWindow attribute)

 	FLAT_TOP_WINDOW (niscope.ArrayMeasurement attribute)

 	flex_fir_antialias_filter_type (in module niscope.Session)

 	FlexFIRAntialiasFilterType (class in niscope)

 	FLEXRES (niscope.AcquisitionType attribute)

 	FOURTYEIGHT_TAP_HANNING (niscope.FlexFIRAntialiasFilterType attribute)

 	FOURTYEIGHT_TAP_STANDARD (niscope.FlexFIRAntialiasFilterType attribute)

 	fpga_bitfile_path (in module niscope.Session)

 	FREQUENCY (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

G

 	
 	get_channel_names() (in module niscope.Session)

 	get_equalization_filter_coefficients() (in module niscope.Session)

 	get_ext_cal_last_date_and_time() (in module niscope.Session)

 	get_ext_cal_last_temp() (in module niscope.Session)

 	get_self_cal_last_date_and_time() (in module niscope.Session)

 	get_self_cal_last_temp() (in module niscope.Session)

 	GLITCH (niscope.TriggerType attribute)

 	
 	glitch_condition (in module niscope.Session)

 	glitch_polarity (in module niscope.Session)

 	glitch_width (in module niscope.Session)

 	GlitchCondition (class in niscope)

 	GlitchPolarity (class in niscope)

 	GND (niscope.VerticalCoupling attribute)

 	GREATER (niscope.GlitchCondition attribute)

 	GrpcSessionOptions (class in niscope)

H

 	
 	HAMMING (niscope.FIRFilterWindow attribute)

 	HAMMING_WINDOW (niscope.ArrayMeasurement attribute)

 	HANNING (niscope.FIRFilterWindow attribute)

 	HANNING_WINDOW (niscope.ArrayMeasurement attribute)

 	HF_REJECT (niscope.TriggerCoupling attribute)

 	high_pass_filter_frequency (in module niscope.Session)

 	HIGH_REF_VOLTS (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	
 	HIGHPASS (niscope.FilterType attribute)

 	horz_enforce_realtime (in module niscope.Session)

 	horz_min_num_pts (in module niscope.Session)

 	horz_num_records (in module niscope.Session)

 	horz_record_length (in module niscope.Session)

 	horz_record_ref_position (in module niscope.Session)

 	horz_sample_rate (in module niscope.Session)

 	horz_time_per_record (in module niscope.Session)

 	HYSTERESIS (niscope.TriggerType attribute)

I

 	
 	IMMEDIATE (niscope.TriggerType attribute)

 	import_attribute_configuration_buffer() (in module niscope.Session)

 	import_attribute_configuration_file() (in module niscope.Session)

 	IN_PROGRESS (niscope.AcquisitionStatus attribute)

 	INCOMPLETE (niscope.RISMethod attribute)

 	INITIALIZE_SERVER_SESSION (niscope.SessionInitializationBehavior attribute)

 	initiate() (in module niscope.Session)

 	input_clock_source (in module niscope.Session)

 	input_impedance (in module niscope.Session)

 	instrument_firmware_revision (in module niscope.Session)

 	
 	instrument_manufacturer (in module niscope.Session)

 	instrument_model (in module niscope.Session)

 	instruments (niscope.Session.niscope.Session attribute)

 	INTEGRAL (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	interleaving_offset_correction_enabled (in module niscope.Session)

 	InvalidRepeatedCapabilityError

 	INVERSE (niscope.ArrayMeasurement attribute)

 	io_resource_descriptor (in module niscope.Session)

 	is_probe_comp_on (in module niscope.Session)

L

 	
 	LAST_ACQ_HISTOGRAM (niscope.ArrayMeasurement attribute)

 	LEAVING (niscope.TriggerWindowMode attribute)

 	LESS (niscope.GlitchCondition attribute)

 	LF_REJECT (niscope.TriggerCoupling attribute)

 	LIMITED_BIN_WIDTH (niscope.RISMethod attribute)

 	LINE_NUMBER (niscope.VideoTriggerEvent attribute)

 	
 	lock() (in module niscope.Session)

 	logical_name (in module niscope.Session)

 	LOW_REF_VOLTS (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	LOWHIGH (niscope.PercentageMethod attribute)

 	LOWPASS (niscope.FilterType attribute)

M

 	
 	M_PAL (niscope.VideoSignalFormat attribute)

 	master_enable (in module niscope.Session)

 	max_input_frequency (in module niscope.Session)

 	max_real_time_sampling_rate (in module niscope.Session)

 	max_ris_rate (in module niscope.Session)

 	meas_array_gain (in module niscope.Session)

 	meas_array_offset (in module niscope.Session)

 	meas_chan_high_ref_level (in module niscope.Session)

 	meas_chan_low_ref_level (in module niscope.Session)

 	meas_chan_mid_ref_level (in module niscope.Session)

 	meas_filter_center_freq (in module niscope.Session)

 	meas_filter_cutoff_freq (in module niscope.Session)

 	meas_filter_order (in module niscope.Session)

 	meas_filter_ripple (in module niscope.Session)

 	meas_filter_taps (in module niscope.Session)

 	meas_filter_transient_waveform_percent (in module niscope.Session)

 	meas_filter_type (in module niscope.Session)

 	meas_filter_width (in module niscope.Session)

 	meas_fir_filter_window (in module niscope.Session)

 	meas_high_ref (in module niscope.Session)

 	meas_hysteresis_percent (in module niscope.Session)

 	meas_interpolation_sampling_factor (in module niscope.Session)

 	meas_last_acq_histogram_size (in module niscope.Session)

 	meas_low_ref (in module niscope.Session)

 	meas_mid_ref (in module niscope.Session)

 	
 	meas_other_channel (in module niscope.Session)

 	meas_percentage_method (in module niscope.Session)

 	meas_polynomial_interpolation_order (in module niscope.Session)

 	meas_ref_level_units (in module niscope.Session)

 	meas_time_histogram_high_time (in module niscope.Session)

 	meas_time_histogram_high_volts (in module niscope.Session)

 	meas_time_histogram_low_time (in module niscope.Session)

 	meas_time_histogram_low_volts (in module niscope.Session)

 	meas_time_histogram_size (in module niscope.Session)

 	meas_voltage_histogram_high_volts (in module niscope.Session)

 	meas_voltage_histogram_low_volts (in module niscope.Session)

 	meas_voltage_histogram_size (in module niscope.Session)

 	MID_REF_VOLTS (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	MIN_NUM_AVERAGES (niscope.RISMethod attribute)

 	min_sample_rate (in module niscope.Session)

 	MINMAX (niscope.PercentageMethod attribute)

 	
 module

 	niscope

 	MULTI_ACQ_AVERAGE (niscope.ArrayMeasurement attribute)

 	(niscope.ClearableMeasurement attribute)

 	MULTI_ACQ_TIME_HISTOGRAM (niscope.ArrayMeasurement attribute)

 	(niscope.ClearableMeasurement attribute)

 	MULTI_ACQ_VOLTAGE_HISTOGRAM (niscope.ArrayMeasurement attribute)

 	(niscope.ClearableMeasurement attribute)

 	MULTIPLY_CHANNELS (niscope.ArrayMeasurement attribute)

N

 	
 	NEGATIVE (niscope.GlitchPolarity attribute)

 	(niscope.RuntPolarity attribute)

 	(niscope.TriggerSlope attribute)

 	(niscope.VideoPolarity attribute)

 	(niscope.WidthPolarity attribute)

 	
 niscope

 	module

 	
 	NO_MEASUREMENT (niscope.ArrayMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	NO_TRIGGER_MOD (niscope.TriggerModifier attribute)

 	NONE (niscope.FIRFilterWindow attribute)

 	(niscope.RuntTimeCondition attribute)

 	NORMAL (niscope.AcquisitionType attribute)

 	NOW (niscope.FetchRelativeTo attribute)

 	NTSC (niscope.VideoSignalFormat attribute)

O

 	
 	ON_DEMAND (niscope.CableSenseMode attribute)

 	onboard_memory_size (in module niscope.Session)

 	Option (class in niscope)

 	output_clock_source (in module niscope.Session)

 	
 	OUTSIDE (niscope.RuntTimeCondition attribute)

 	(niscope.WidthCondition attribute)

 	OVERSHOOT (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

P

 	
 	PAL (niscope.VideoSignalFormat attribute)

 	PERCENTAGE (niscope.RefLevelUnits attribute)

 	PercentageMethod (class in niscope)

 	PERIOD (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	PHASE_DELAY (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	pll_lock_status (in module niscope.Session)

 	points_done (in module niscope.Session)

 	poll_interval (in module niscope.Session)

 	POLYNOMIAL_INTERPOLATION (niscope.ArrayMeasurement attribute)

 	
 	POSITIVE (niscope.GlitchPolarity attribute)

 	(niscope.RuntPolarity attribute)

 	(niscope.TriggerSlope attribute)

 	(niscope.VideoPolarity attribute)

 	(niscope.WidthPolarity attribute)

 	PRESHOOT (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	PRETRIGGER (niscope.FetchRelativeTo attribute)

 	probe_attenuation (in module niscope.Session)

 	probe_compensation_signal_start() (in module niscope.Session)

 	probe_compensation_signal_stop() (in module niscope.Session)

R

 	
 	read() (in module niscope.Session)

 	READ_POINTER (niscope.FetchRelativeTo attribute)

 	ready_for_advance_event_output_terminal (in module niscope.Session)

 	ready_for_advance_event_terminal_name (in module niscope.Session)

 	ready_for_ref_event_output_terminal (in module niscope.Session)

 	ready_for_ref_event_terminal_name (in module niscope.Session)

 	ready_for_start_event_output_terminal (in module niscope.Session)

 	ready_for_start_event_terminal_name (in module niscope.Session)

 	record_arm_source (in module niscope.Session)

 	records_done (in module niscope.Session)

 	ref_clk_rate (in module niscope.Session)

 	ref_trig_tdc_enable (in module niscope.Session)

 	ref_trigger_detector_location (in module niscope.Session)

 	ref_trigger_minimum_quiet_time (in module niscope.Session)

 	ref_trigger_terminal_name (in module niscope.Session)

 	REFERENCE (niscope.WhichTrigger attribute)

 	RefLevelUnits (class in niscope)

 	RefTriggerDetectorLocation (class in niscope)

 	reset() (in module niscope.Session)

 	reset_device() (in module niscope.Session)

 	
 	reset_with_defaults() (in module niscope.Session)

 	resolution (in module niscope.Session)

 	RESTORE_EXTERNAL_CALIBRATION (niscope.Option attribute)

 	ris_in_auto_setup_enable (in module niscope.Session)

 	ris_method (in module niscope.Session)

 	ris_num_averages (in module niscope.Session)

 	RISE_SLEW_RATE (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	RISE_TIME (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	RISMethod (class in niscope)

 	RpcError

 	RUNT (niscope.TriggerType attribute)

 	runt_high_threshold (in module niscope.Session)

 	runt_low_threshold (in module niscope.Session)

 	runt_polarity (in module niscope.Session)

 	runt_time_condition (in module niscope.Session)

 	runt_time_high_limit (in module niscope.Session)

 	runt_time_low_limit (in module niscope.Session)

 	RuntPolarity (class in niscope)

 	RuntTimeCondition (class in niscope)

S

 	
 	samp_clk_timebase_div (in module niscope.Session)

 	samp_clk_timebase_rate (in module niscope.Session)

 	samp_clk_timebase_src (in module niscope.Session)

 	sample_clock_timebase_multiplier (in module niscope.Session)

 	sample_mode (in module niscope.Session)

 	ScalarMeasurement (class in niscope)

 	SECAM (niscope.VideoSignalFormat attribute)

 	self_cal() (in module niscope.Session)

 	SELF_CALIBRATE_ALL_CHANNELS (niscope.Option attribute)

 	self_test() (in module niscope.Session)

 	SelfTestError

 	send_software_trigger_edge() (in module niscope.Session)

 	serial_number (in module niscope.Session)

 	Session (class in niscope)

 	SessionInitializationBehavior (class in niscope)

 	
 	simulate (in module niscope.Session)

 	SINGLE_ENDED (niscope.TerminalConfiguration attribute)

 	SIXTEEN_TAP_HANNING (niscope.FlexFIRAntialiasFilterType attribute)

 	SLOPE_EITHER (niscope.TriggerSlope attribute)

 	SOFTWARE (niscope.TriggerType attribute)

 	specific_driver_description (in module niscope.Session)

 	specific_driver_revision (in module niscope.Session)

 	specific_driver_vendor (in module niscope.Session)

 	START (niscope.FetchRelativeTo attribute)

 	(niscope.WhichTrigger attribute)

 	start_to_ref_trigger_holdoff (in module niscope.Session)

 	start_trigger_terminal_name (in module niscope.Session)

 	STATUS_UNKNOWN (niscope.AcquisitionStatus attribute)

 	SUBTRACT_CHANNELS (niscope.ArrayMeasurement attribute)

 	supported_instrument_models (in module niscope.Session)

T

 	
 	tclk (in module niscope.Session)

 	TerminalConfiguration (class in niscope)

 	TIME_DELAY (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	TIME_HISTOGRAM_HITS (niscope.ClearableMeasurement attribute)

 	TIME_HISTOGRAM_MAX (niscope.ClearableMeasurement attribute)

 	TIME_HISTOGRAM_MEAN (niscope.ClearableMeasurement attribute)

 	TIME_HISTOGRAM_MEAN_PLUS_2_STDEV (niscope.ClearableMeasurement attribute)

 	TIME_HISTOGRAM_MEAN_PLUS_3_STDEV (niscope.ClearableMeasurement attribute)

 	TIME_HISTOGRAM_MEAN_PLUS_STDEV (niscope.ClearableMeasurement attribute)

 	TIME_HISTOGRAM_MEDIAN (niscope.ClearableMeasurement attribute)

 	TIME_HISTOGRAM_MIN (niscope.ClearableMeasurement attribute)

 	TIME_HISTOGRAM_MODE (niscope.ClearableMeasurement attribute)

 	TIME_HISTOGRAM_NEW_HITS (niscope.ClearableMeasurement attribute)

 	TIME_HISTOGRAM_PEAK_TO_PEAK (niscope.ClearableMeasurement attribute)

 	TIME_HISTOGRAM_STDEV (niscope.ClearableMeasurement attribute)

 	TRIANGLE (niscope.FIRFilterWindow attribute)

 	TRIANGLE_WINDOW (niscope.ArrayMeasurement attribute)

 	TRIGGER (niscope.FetchRelativeTo attribute)

 	trigger_auto_triggered (in module niscope.Session)

 	trigger_coupling (in module niscope.Session)

 	
 	trigger_delay_time (in module niscope.Session)

 	trigger_holdoff (in module niscope.Session)

 	trigger_hysteresis (in module niscope.Session)

 	trigger_impedance (in module niscope.Session)

 	trigger_level (in module niscope.Session)

 	trigger_modifier (in module niscope.Session)

 	trigger_slope (in module niscope.Session)

 	trigger_source (in module niscope.Session)

 	trigger_type (in module niscope.Session)

 	trigger_window_high_level (in module niscope.Session)

 	trigger_window_low_level (in module niscope.Session)

 	trigger_window_mode (in module niscope.Session)

 	TriggerCoupling (class in niscope)

 	TriggerModifier (class in niscope)

 	TriggerSlope (class in niscope)

 	TriggerType (class in niscope)

 	TriggerWindowMode (class in niscope)

 	TV (niscope.TriggerType attribute)

 	tv_trigger_event (in module niscope.Session)

 	tv_trigger_line_number (in module niscope.Session)

 	tv_trigger_polarity (in module niscope.Session)

 	tv_trigger_signal_format (in module niscope.Session)

U

 	
 	UNBALANCED_DIFFERENTIAL (niscope.TerminalConfiguration attribute)

 	unlock() (in module niscope.Session)

 	
 	UnsupportedConfigurationError

 	use_spec_initial_x (in module niscope.Session)

V

 	
 	vertical_coupling (in module niscope.Session)

 	vertical_offset (in module niscope.Session)

 	vertical_range (in module niscope.Session)

 	VerticalCoupling (class in niscope)

 	VIDEO_1080I_50_FIELDS_PER_SECOND (niscope.VideoSignalFormat attribute)

 	VIDEO_1080I_59_94_FIELDS_PER_SECOND (niscope.VideoSignalFormat attribute)

 	VIDEO_1080I_60_FIELDS_PER_SECOND (niscope.VideoSignalFormat attribute)

 	VIDEO_1080P_24_FRAMES_PER_SECOND (niscope.VideoSignalFormat attribute)

 	VIDEO_480I_59_94_FIELDS_PER_SECOND (niscope.VideoSignalFormat attribute)

 	VIDEO_480I_60_FIELDS_PER_SECOND (niscope.VideoSignalFormat attribute)

 	VIDEO_480P_59_94_FRAMES_PER_SECOND (niscope.VideoSignalFormat attribute)

 	VIDEO_480P_60_FRAMES_PER_SECOND (niscope.VideoSignalFormat attribute)

 	VIDEO_576I_50_FIELDS_PER_SECOND (niscope.VideoSignalFormat attribute)

 	VIDEO_576P_50_FRAMES_PER_SECOND (niscope.VideoSignalFormat attribute)

 	VIDEO_720P_50_FRAMES_PER_SECOND (niscope.VideoSignalFormat attribute)

 	VIDEO_720P_59_94_FRAMES_PER_SECOND (niscope.VideoSignalFormat attribute)

 	VIDEO_720P_60_FRAMES_PER_SECOND (niscope.VideoSignalFormat attribute)

 	VideoPolarity (class in niscope)

 	VideoSignalFormat (class in niscope)

 	VideoTriggerEvent (class in niscope)

 	VOLTAGE_AVERAGE (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	VOLTAGE_BASE (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	VOLTAGE_BASE_TO_TOP (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	VOLTAGE_CYCLE_AVERAGE (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	
 	VOLTAGE_CYCLE_RMS (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	VOLTAGE_HIGH (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	VOLTAGE_HISTOGRAM_HITS (niscope.ClearableMeasurement attribute)

 	VOLTAGE_HISTOGRAM_MAX (niscope.ClearableMeasurement attribute)

 	VOLTAGE_HISTOGRAM_MEAN (niscope.ClearableMeasurement attribute)

 	VOLTAGE_HISTOGRAM_MEAN_PLUS_2_STDEV (niscope.ClearableMeasurement attribute)

 	VOLTAGE_HISTOGRAM_MEAN_PLUS_3_STDEV (niscope.ClearableMeasurement attribute)

 	VOLTAGE_HISTOGRAM_MEAN_PLUS_STDEV (niscope.ClearableMeasurement attribute)

 	VOLTAGE_HISTOGRAM_MEDIAN (niscope.ClearableMeasurement attribute)

 	VOLTAGE_HISTOGRAM_MIN (niscope.ClearableMeasurement attribute)

 	VOLTAGE_HISTOGRAM_MODE (niscope.ClearableMeasurement attribute)

 	VOLTAGE_HISTOGRAM_NEW_HITS (niscope.ClearableMeasurement attribute)

 	VOLTAGE_HISTOGRAM_PEAK_TO_PEAK (niscope.ClearableMeasurement attribute)

 	VOLTAGE_HISTOGRAM_STDEV (niscope.ClearableMeasurement attribute)

 	VOLTAGE_LOW (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	VOLTAGE_MAX (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	VOLTAGE_MIN (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	VOLTAGE_PEAK_TO_PEAK (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	VOLTAGE_RMS (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	VOLTAGE_TOP (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	VOLTS (niscope.RefLevelUnits attribute)

W

 	
 	WhichTrigger (class in niscope)

 	WIDTH (niscope.TriggerType attribute)

 	width_condition (in module niscope.Session)

 	width_high_threshold (in module niscope.Session)

 	width_low_threshold (in module niscope.Session)

 	WIDTH_NEG (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	width_polarity (in module niscope.Session)

 	
 	WIDTH_POS (niscope.ClearableMeasurement attribute)

 	(niscope.ScalarMeasurement attribute)

 	WidthCondition (class in niscope)

 	WidthPolarity (class in niscope)

 	WINDOW (niscope.TriggerType attribute)

 	WINDOWED_FIR_FILTER (niscope.ArrayMeasurement attribute)

 	WITHIN (niscope.RuntTimeCondition attribute)

 	(niscope.WidthCondition attribute)

 nav.xhtml

 Table of Contents

 		
 NI-SCOPE Python API Documentation

 		
 niscope module

 		
 Installation

 		
 Usage

 		
 API Reference

 		
 Session

 		
 Methods

 		
 Properties

 		
 NI-TClk Support

 		
 Repeated Capabilities

 		
 Enums

 		
 Exceptions and Warnings

 		
 Examples

 		
 gRPC Support

_static/file.png

_static/minus.png

_static/python-dmm-small.jpg

_static/plus.png

